

ELEVATING SERVICE IN COMPONENTS

Catálogo Técnico

QUINTA EDIÇÃO

PT

REVISÕES DO CATÁLOGO:

REV.	DATA	PÁGINA	DESCRIÇÃO
00	05/10/2015	-	Emissão
			Alterações nas páginas:1-4, 1-5, 2-17, 2-18, 2-19, 2-20, 2-21, 3-1, 3-5, 3-6, 3-7, 3-8, 3-11, 4-18, 4-22, 5-8,
01	24/03/2016		5-17, 6-1, 6-2, 6-3, 6-4, 6-9, 6-10, 6-11, 6-12, 6-15, 6-17, 6-18, 6-19, 6-20, 6-21, 7-7, 7-15, 7-25, 8-14, 10-
			2
02	04/09/2019		Alterações nas páginas:1-4, 2-21, 3-1, 3-2, 3-3, 3-4, 3-11, 4-2, 4-22, 5-15, 5-21, 6-4, 6-8, 6-9, 6-11, 6-15, 6-
	0-70372013		17, 6-19, 6-20, 6-21, 8-3, 8-4, 8-7, 8-8, 8-10, 10-2
03	13/01/2021		Alterações nas páginas: 2-2, 2-3, 2-23,2-24, 3-1, 3-5, 4-8, 4-12, 4-28, 6, 6-9, 6-10, 7
04	19/04/2022		Alterações nas páginas: 1-2, 1-3, 1-5, 1-6, 2-1, 2-2, 2-23, 2-24, 3-2, 3-5, 3-7, 4-4, 4-5, 4-7, 4-8, 5-21, 6-4,
	1		6-9, 6-10, 7-7, 7-12, 7-16, 8-5, 8-14,10-1, 10-2, 10-4, 11
05	07/01/2025	2-18	Atualização das configurações para bomba de 125 l/min
05	07/01/2025	3-2	Adoção do Parafuso M18 no cilindro C97-80 indireto lateral
05	07/01/2025	3-5	Correção do texto CS Ø 110
05	07/01/2025	3-7, 3-8, 3-9	Alteração dos pesos dos cilindros
05	07/01/2025	4-28	Adição do fundo antióleo 8H102910
05	07/01/2025	5-15	Figura da conexão elétrica
05	07/01/2025	6-2	Alteração das medidas M2x, M2y nos reservatórios 60/S e 110/S
05	07/01/2025	6-4	Atualização dos dados do novo motor imerso de 4,1 kW
05			Inserção da tabela de braços de guia dos cilindros telescópicos
05	07/01/2025	8-3, 8-4 8-7, 8-8	Alteração da imagem e da indicação do parafuso 15
05	07/01/2025	8-10	Adição da linha do armário 60/S com HDU Cód. 8H203099 e retirada de 60/S da linha do armário 8H202437
05	07/01/2025	8-14	Entre-eixo dos furos de fixação VP HC 034 no cilindro C97

Índice

1	INFO	DRMAÇÕES GERAIS	1-1
	1.1	PRINCÍPIOS DE FUNCIONAMENTO	1-1
	1.2	VANTAGENS DO EQUIPAMENTO HIDRÁULICO	1-1
	1.3	ESCOLHA DO ÓLEO	1-2
	1.3.	1 CARACTERÍSTICAS GERAIS	1-2
	1.3.2		
	1.3.3	•	
	1.3.4		
	1.4	O NÍVEL DE SILÊNCIO DO EQUIPAMENTO HIDRÁULICO	1-4
	1.5	MOTORES PARA UNIDADES DE CONTROLE DE ELEVADORES	
	1.6	MOTORES PARA UNIDADES DE CONTROLE HOMELIFT	
	1.7	CORRENTES DE ARRANQUE	1-6
2	CON	/PONENTES HIDRÁULICOS	2-1
	2.1	SELEÇÃO DOS COMPONENTES HIDRÁULICOS	2-1
	2.2	DIMENSIONAMENTO DO CILINDRO	
	2.3	DIAGRAMA DE SEGURANÇA DAS HASTES NO PICO DE CARGA: CILINDROS C97, HC2	2-3
	2.4	DIAGRAMA DE SEGURANÇA DAS HASTES NO PICO DE CARGA: CILINDRO CS	
	2.5	SELEÇÃO DO MOTOR – BOMBA 50 Hz	2-18
	2.6	SELEÇÃO DO MOTOR – BOMBA 60 Hz	2-19
	2.7	SELEÇÃO DO RESERVATÓRIO – Curso máximo da haste – Óleo necessário – Saída da tubulação	2-20
	2.8	DIMENSÕES E MEDIDAS DAS UNIDADES DE CONTROLE SEM HDU	
	2.9	DIMENSÕES E MEDIDAS DAS UNIDADES DE CONTROLE COM HDU (DISPOSITIVO UCM)	
	2.10	DIMENSÕES DAS UNIDADES DE CONTROLE COM RESERVATÓRIO DUPLO	
	2.11	VÁLVULAS DE SEGURANÇA	2-24
	2.11		
	2.11	2 VÁLVULAS DE PREVENÇÃO UCM (HDU)	2-24
	2.12	UNIDADES DE CONTROLE MRL	2-25
	2.12	.1 APLICAÇÕES EM FOSSO (horizontal)	2-25
	2.12	2.2 APLICAÇÕES EM VÃO (vertical)	2-26
3	TAB	ELAS DE DIMENSÕES, DADOS TÉCNICOS E ESQUEMAS DA VÁLVULA	3-1
	3.1	CILINDROS C97 – DIMENSÕES DA CAMISA, FUNDO E JUNTAS DOS CILINDROS	3-1
	3.2	CILINDROS C97 - INDIRETO LATERAL (EM TALHA)	
	3.3	CILINDROS C97 - DIRETO CENTRAL	3-3
	3.4	CILINDROS C97 - DIRETO LATERAL	3-4
	3.5	CILINDRO SLIM CS – INDIRETO LATERAL (EM TALHA)	3-5
	3.6	CILINDROS HC2	
	3.7	CILINDROS HC2 – INDIRETO LATERAL (EM TALHA)	
	3.8	CILINDROS HC2 – DIRETO CENTRAL	
	3.9	CILINDROS HC2 – DIRETO LATERAL	
	3.10	DIAGRAMA DE FUNCIONAMENTO ELÉTRICO DA VÁLVULA NL	3-10

3.11	ESQ	UEMA OLEODINÂMICO DA VÁLVULA TIPO "NL"	3-11
AC	ESSÓR	IOS	4-1
4.1 4.2		MBA DE MÃO PM – 6SSOSTATOS	
4.2 4.2		PRESSOSTATO DE SOBRECARGA	
4.3	DIS	POSITIVOS DE REGULAGEM DO CURSO	4-4
4.3 ST. 4.3	ARTER	DISPOSITIVO ELÉTRICO (EVS) DE RETARDO DA PARTIDA EM SUBIDA COM ARRANQUE λ – 4-4 DISPOSITIVO HIDRÁULICO (PARAFUSO № 10) DE RETARDO DA PARTIDA EM SUBIDA POR SOF 4-5	
4.3		DISPOSITIVO SOFT-STARTER	
4.3		DISPOSITIVO SOFT-STOP	
4.4	ACE	SSÓRIOS PARA AQUECIMENTO	
4.4 4.4		RESISTÊNCIA DE AQUECIMENTO DO ÓLEO: CARACTERÍSTICAS, APLICAÇÕES E MONTAGEM RESISTÊNCIA DE AQUECIMENTO DO BLOCO DE VÁLVULAS NL	
4.5	RES	FRIAMENTO DO ÓLEO	4-10
4.5 4.5		RESFRIAMENTO POR ARRESFRIAMENTO POR ÁGUA	
4.6	MIC	RONIVELAMENTO	4-16
4.6	5.1	CARACTERÍSTICAS TÉCNICAS	4-16
4.6	5.2	ESQUEMA DE VELOCIDADE DA CABINE DURANTE O MICRONIVELAMENTO	4-17
4.7	TUE	OS DE CONEXÃO	4-18
4.7 4.7		TUBO EM AÇO St 37.4 TUBO FLEXÍVEL	
4.8	CON	NEXÕES	4-19
4.8	3.1	CONEXÃO DO TERMINAL RETO	4-19
4.8		CONEXÃO DE JUNÇÃO RETA	
4.8		CONEXÃO DE JUNÇÃO EM COTOVELO	
4.8 4.8		CONEXÃO DE TRÊS VIASCONEXÃO DE REDUÇÃO DE LINHA COMPLETA	
4.8		CONEXÃO DE REDUÇÃO DE LINHA EM ESPIGA	
4.8		CONEXÃO MACHO-MACHO (UNIÃO ROSQUEADA)	
4.8	3.8	CONEXÃO ESPECIAL DE TRÊS VIAS: 2" + Ø42 + Ø42	4-21
4.9	ARN	/IÁRIOS MRL	4-22
4.9	9.1	GAMA E DIMENSÕES	
4.9	9.2	CONFIGURAÇÕES DO ARMÁRIO E SAÍDAS DO TUBO FLEXÍVEL	4-23
4.10	GUI	AS PARA ELEVADORES	4-24
4 11	FМI	BALAGEM	4-25

	4.11.1	EMBALAGEM PARA CILINDROS	4-25
	4.11.2	EMBALAGEM PARA UNIDADE DE CONTROLE	4-26
	4.11.3	EMBALAGEM PARA ARMÁRIOS MRL	4-27
	4.12 FL	JNDOS ANTIÓLEO	4-28
5	MONTA	AGEM – CALIBRAÇÃO – MANUTENÇÃO	5-1
	5.1 IN	FORMAÇÕES GERAIS	5-1
	5.1.1	INTRODUÇÃO	
	5.1.2	INSTALAÇÃO DE CILINDROS E UNIDADES DE CONTROLE	
	5.1.3	MANUTENÇÃO	
	5.1.4	PRECAUÇÕES ANTIPOLUIÇÃO	
	5.1.5	VERIFICAÇÃO DO MATERIAL FORNECIDO	
	5.1.6	REQUISITOS DO LOCAL DO ELEVADOR	5-2
	5.2 IN	STALAÇÕES DOS CILINDROS	5-2
	5.2.1	INFORMAÇÕES GERAIS	5-2
	5.2.2	TRANSPORTE E ARMAZENAMENTO DOS CILINDROS	5-2
	5.2.3	O CILINDRO	
	5.2.4	MONTAGEM DE CILINDROS INDIRETOS LATERAIS EM UMA PEÇA	5-3
	5.2.5	MONTAGEM DE CILINDROS INDIRETOS LATERAIS EM DUAS OU MAIS PEÇAS	
	5.2.6	MONTAGEM DE CILINDROS PADRÃO E TELESCÓPICOS DIRETOS LATERAIS	
	5.2.7	MONTAGEM DOS CILINDROS PADRÃO E DOS TELESCÓPICOS DIRETOS CENTRAIS	5-6
	5.3 IN	STALAÇÃO DAS UNIDADES DE CONTROLE	5-8
	5.3.1	INFORMAÇÕES GERAIS	
	5.3.2	TRANSPORTE E ARMAZENAMENTO DAS UNIDADES DE CONTROLE	
	5.3.3	UNIDADE DE CONTROLE	5-9
	5.4 TU	JBULAÇÕES E CONEXÕES HIDRÁULICAS	5-9
	5.4.1	INFORMAÇÕES GERAIS	5-9
	5.4.2	TRANSPORTE E ARMAZENAMENTO DOS TUBOS	5-9
	5.4.3	CONEXAÕ DE TUBOS RÍGIDOS	
	5.4.4	CONEXÃO DE TUBOS FLEXÍVEIS	5-11
	5.5 CC	DNEXÃO DE EQUIPAMENTOS COM DOIS CILINDROS	5-12
	5.6 CC	DNEXÕES ELÉTRICAS	5-13
	5.6.1	INFORMAÇÕES GERAIS	5-13
	5.6.2	CAIXA DE CONEXÕES	
	5.6.3	CONEXÃO ELÉTRICA DO MOTOR TRIFÁSICO	
	5.6.4	CONEXÃO ELÉTRICA DO MOTOR MONOFÁSICO	
	5.6.5	CONEXÃO ELÉTRICA DO GRUPO DE VÁLVULAS	
	5.6.6	TERMOSTATO DE TEMPERATURA DO ÓLEO	
	5.6.7	TERMÍSTORES DO MOTOR	5-18
	5.7 EX	PURGO DO AR	5-20
		GULAGENS DA VÁLVULA NL	
	59 C	ALIBRAÇÃO E VERIFICAÇÃO DA VÁLVI II A DE BLOOLIFIO VP	5-22

	5.9.3	1 CARACTERÍSTICAS GERAIS	5-22
	5.9.2	2 REGULAÇÃO DA VÁLVULA DE BLOQUEIO	5-23
	5.10	VERIFICAÇÃO E TESTE DO EQUIPAMENTO	5-24
	5.10	0.1 TESTE DO EQUIPAMENTO A DUAS VEZES A PRESSÃO ESTÁTICA MÁXIMA	5-24
	5.10		
	5.10		
	5.11	MANUTENÇÃO DO EQUIPAMENTO	5-26
	5.11	1 INFORMAÇÕES GERAIS	5-26
	5.11	2 SUBSTITUIÇÃO DAS VEDAÇÕES DO CILINDRO DE UM ESTÁGIO	5-27
	5.11	3 SUBSTITUIÇÃO DAS VEDAÇÕES DOS CILINDROS TELESCÓPICOS	5-29
	5.11	•	
	5.11	5 SUBSTITUIÇÃO DAS VEDAÇÕES VBP DA VÁLVULA NL	5-34
6	HON	MELIFT	6-1
	6.1	INFORMAÇÕES GERAIS	6-1
	6.2	DIMENSÕES E MEDIDAS DAS UNIDADES DE CONTROLE HOMELIFT DE MOTOR IMERSO	6-2
	6.2.		
	6.2.2	2 COM VÁLVULA HDU (UCM)	6-2
	6.3	DIMENSÕES E MEDIDAS DAS UNIDADES DE CONTROLE HOMELIFT DE MOTOR EXTERNO	6-3
	6.3.	1 SEM VÁLVULA HDU	6-3
	6.3.2	2 COM VÁLVULA HDU (UCM)	6-3
	6.4	SELEÇÃO DO MOTOR BOMBA	6-4
	6.4.	1 HOMELIFT DE MOTOR IMERSO	6-4
	6.4.2		
	6.4.3	3 CURSO MÁXIMO DA HASTE E QUANTIDADE DE ÓLEO NOS RESERVATÓRIOS	6-6
	6.5	UNIDADES DE CONTROLE ECO DRY	6-7
	6.5.	1 DISPOSITIVOS PADRÃO	6-8
	6.6	UNIDADES DE CONTROLE TPU	6-9
	6.7	DIAGRAMAS DE SEGURANÇA DAS HASTES EM PICO DE CARGA SEGUNDO AS NORMAS EN81-2 E EN81-2	0/506-
	11		
	6.8	CONEXÃO ELÉTRICA DO MOTOR MONOFÁSICO	
	6.9	CONEXÃO DO MOTOR TRIFÁSICO	
	6.10	REGULAGEM DO HOMELIFT DE UMA VELOCIDADE (V1)	
	6.11	HOMELIFT DE 1 VELOCIDADE – ESQUEMA HIDRÁULICO E DE VELOCIDADE	
	6.12	REGULAGEM DO HOMELIFT DE DUAS VELOCIDADES (V2)	
	6.13	HOMELIFT DE 2 VELOCIDADES – ESQUEMA HIDRÁULICO E DE VELOCIDADE DISPOSITIVO PARAFUSO N° 4 – TESTE DA VÁLVULA VP	
	6.14 6.15	EMBALAGEM PARA HOMELIFT	
	6.16	ARMÁRIO PARA HOMELIFT	
	6.17	EMBALAGENS PARA ARMÁRIO HOMELIFT	
7		NDROS TELESCÓDICOS SINCRONIZADOS	7_1
		NUMBER A LEGERAL DEN LAS SUNCES UNIVERSALAS	/!

	7.1	INFORMAÇÕES GERAIS	7-1
	7.2	SELEÇÃO DO CILINDRO TELESCÓPICO E DA UNIDADE DE CONTROLE	7-2
	7.3	SELEÇÃO DO MOTOR – BOMBA 50 Hz	7-3
	7.4	SELEÇÃO DO MOTOR – BOMBA 60 Hz	7-4
	7.5	PESO DOS CILINDROS TELESCÓPICOS	7-5
	7.6	CILINDROS TELESCÓPICOS DE DOIS ESTÁGIOS: DIMENSÕES	7-6
	7.7	CILINDROS TELESCÓPICOS HOMELIFT 50/2 e 60/2	7-7
	7.8	CILINDRO TELESCÓPICO 77/2	
	7.9	CT-2: DIAGRAMAS DE SEGURANÇA DAS HASTES EM PICO DE CARGA (NORMA EN81-20/50)	
	7.10	CILINDROS TELESCÓPICOS DE TRÊS ESTÁGIOS: DIMENSÕES	
	7.11	CT-3: DIAGRAMAS DE SEGURANÇA DAS HASTES EM PICO DE CARGA (NORMA EN81-20/50)	
	7.12	CHAPAS INFERIORES e SUPERIORES DOS CILINDROS DIRETOS LATERAIS	
	7.13	BRAÇOS DE GUIA	7-17
8	PEC	AS DE REPOSIÇÃO	8-1
	•	•	
	8.1	UNIDADE DE CONTROLE	
	8.2	GRUPO DA VÁLVULA NL	
	8.3	GRUPO DA VÁLVULA HCACESSÓRIOS DO RESERVATÓRIO	
	8.4 8.5	ARMÁRIOS MRL	
	8.6	CILINDROS	
	8.6.		
	8.6.		
	8.6.		
	8.6.		
	8.6.		
		•	
	8.7	CONEXÕES	8-15
	8.7.	1 TUBOS	8-15
	8.7.	2 CONEXÕES	8-15
9	MA	NUAL DE INSTRUÇÕES PARA COMPONENTES HIDRÁULICOS	9-1
1(VVERTER	
_`	10.1	INFORMAÇÕES GERAIS	
	10.1	RESISTÊNCIAS DE FRENAGEM	
	10.2	ADVERTÊNCIAS	_
	10.5	LIMITAÇÃO DE POTÊNCIA	
	10.4	TABELA DE ACOPLAMENTOS DO INVERTER	
	10.5	COMPATIBILIDADE ELETROMAGNÉTICA (EMC)	
	10.7	PEÇAS DE REPOSIÇÃO	
_			
11	1 V	'ÁLVI LA FLETRÔNICA	11-1

1 INFORMAÇÕES GERAIS

Os equipamentos hidráulicos OMARLIFT são garantia de segurança e qualidade, uma vez que são produzidos de acordo com as disposições das normativas em vigor (EN81-2 e EN81-20/50). Além disso, a OMARLIFT conta com a certificação CE para as válvulas paraquedas e dispositivos contra movimentos descontrolados (UCM) de acordo com as Diretivas Elevadores 95/16/CE e 2014/33/UE (válidas a partir de 20/4/2016) e a certificação do órgão Certificador notificado TÜV Süd.

1.1 PRINCÍPIOS DE FUNCIONAMENTO

No elevador hidráulico, a transmissão da potência ocorre por meio do óleo sob pressão.

Durante a subida, o motor elétrico faz girar a bomba, que envia o óleo sob pressão do reservatório para o cilindro. O cilindro, direta ou indiretamente conectado à cabine, determina a subida do elevador.

Durante a descida, o motor elétrico permanece parado. O peso próprio da cabine e do seu suporte (arcada), mais a eventual carga, são suficientes para fazer o elevador descer. Nesta fase, o óleo volta ao reservatório sem nenhum consumo de energia elétrica.

Tanto na fase de subida quanto na fase de descida, o fluxo de óleo em movimento é controlado pelo grupo de válvulas que rege completamente a velocidade do elevador desde a partida até a chegada ao andar. O cilindro empurra a cabine de baixo para cima e a sustenta, descarregando todos os esforços no fundo do fosso.

1.2 VANTAGENS DO EQUIPAMENTO HIDRÁULICO

- Não exige um local para a máquina no teto e a unidade de controle pode ser comodamente disposta em qualquer ponto do edifício.
- Está apoiado com estabilidade no solo, no qual descarrega todo o seu peso sem forçar as paredes do vão.
- A cabine não é suspensa pelo teto, mas, sendo empurrada por baixo, pode chegar até sótãos e terraços.
- Não tem o contrapeso, por isso, desfruta todo o espaço do vão do curso.
- Não tem a necessidade de muros portantes e, portanto, pode ser instalado sempre e em qualquer lugar, inclusive em edifícios existentes e reformados ou em vãos de escadas.
- Se for instalada a emergência automática, em caso de falta de corrente elétrica, é capaz de sempre levar o elevador de volta ao andar, eliminando o risco de se permanecer preso na cabine.
- Exige pouca manutenção, é seguro, confiável, confortável e silencioso.

1.3 ESCOLHA DO ÓLEO

1.3.1 CARACTERÍSTICAS GERAIS

O óleo é um elemento muito importante para o sistema oleodinâmico.

Da sua estabilidade, depende o bom funcionamento do elevador, inclusive quando ele é submetido a um tráfico de forte intensidade ou a fortes variações de temperatura. Os requisitos químico-físicos de um bom óleo para elevadores são:

- a) VISCOSIDADE a 40 °C (valores indicativos aconselhados):
- 46 cSt para equipamentos em funcionamento a baixas temperaturas, em especial nos primeiros acionamentos da manhã.
- 68 cSt para sistemas em funcionamento a altas temperaturas, em especial se submetidos a um tráfico de forte intensidade.
- b) **ÍNDICE DE VISCOSIDADE** (alto índice de viscosidade = baixa variação de viscosidade com a temperatura):
- I.V. alto adequado para intensidades de tráfico médio-altas e altas.
- I.V. baixo adequado para intensidades de tráfico baixas e médias.

c) PONTO DE INFLAMABILIDADE: > 190 °C
d) PONTO DE ESCORRIMENTO: <-30 °C
e) PESO ESPECÍFICO A 15 °C: 0,88 kg/dm³
f) LIBERAÇÃO DE AR A 50 °C: <10 min

g) ADITIVAÇÕES: Antioxidação, Anticorrosão, Antidesgaste – Antiferrugem, Antiemulsionamento

ÓLEO [cSt] a 40 °C	ÍNDICE DE VISCOSIDADE (± 5%)	DESEMPENHO
46 46 46	101 140 160	* **
68	> 140	alta temp/tráfico elevado

1.3.2 DURAÇÃO

Definir a duração do óleo é um aspecto muito difícil, pois este aspecto depende essencialmente das condições ambientais de exercício (temperatura, umidade, pó) e das horas efetivas de trabalho.

- Um funcionamento frequente a altas temperaturas (além de 55 °C) ou com frequentes superaquecimentos que levam à intervenção dos dispositivos de proteção térmica acelera significativamente a degradação do óleo.
- Em caso de curto-circuito do motor (para as soluções com motor imerso), o óleo deve sempre ser substituído após se limpar o reservatório para a remoção de eventuais partículas metálicas
- Pelo menos a cada ano e, de todo modo, a cada 2 mil horas de trabalho, verifique o estado de conservação do óleo: odor, cor, espuma, partículas de sujeira ou metal etc., se necessário, por meio de um exame de laboratório especializado.
- Em condições de trabalho normais, na ausência dos fatores anteriormente descritos, a duração pode ser mediamente estimada em 3 mil a 5 mil horas efetivas de funcionamento; em qualquer caso, mesmo se esses valores não tiverem sido alcançados, convém avaliar a substituição a cada 5 anos e taxativamente a cada 10 anos.

1.3.3 **RECOMENDAÇÕES**

Seja qual for o tipo de óleo utilizado no sistema:

- a) Aconselha-se usar sempre óleos com o mais alto índice de viscosidade possível (I.V. ≥ 150)
- b) Respeite sempre e escrupulosamente as normas antipoluição.
 - O óleo usado e os outros resíduos contaminados de óleo devem ser postos em recipientes adequados, de modo a não poluir o meio ambiente.

Para o descarte do óleo usado, é necessário consultar empresas especializadas.

- c) Obedeça os intervalos de inspeção e substituição do óleo previstos
- Não misture óleos de tipo, graduação e índice de viscosidade diferentes

ÓLEOS ECOLÓGICOS 1.3.4

Os óleos biodegradáveis, ecológicos, "green", à base de ésteres e glicóis apresentam um desempenho de compatibilidade ambiental, mas, em geral, têm requisitos muito rigorosos e podem não se mostrar compatíveis, por exemplo, com as vedações em poliuretano (PU), ou se mostrar agressivos para os materiais e as vedações, levando à formação de borrachas, lamas ou ferrugens que não permitem um funcionamento adequado das válvulas (no que diz respeito tanto à confiabilidade quanto ao conforto) e do motor elétrico.

Além disso, exigem custos mais altos para atividades periódicas de verificação e substituições mais frequentes.

O tipo, a gravidade e os prazos com os quais podem-se verificar esses fenômenos de degradação estão ligados às condições operacionais e ambientais de funcionamento, além do tipo de óleo empregado, variando de alguns meses a alguns anos.

Desse modo, não é possível inserir livremente um produto ecológico qualquer nos circuitos hidráulicos, unindo ecologia e garantia de funcionalidade e, sobretudo, mantendo as práticas de verificação, supervisão e substituição normalmente em uso

A adoção de fluidos deste tipo só deve, então, ser vista como uma solução se não puderem ser adotadas outras práticas, e convém sempre entrar em contato com a OMARLIFT para uma avaliação dos riscos.

A pedido, a OMARLIFT propõe para aplicações específicas um fluido compatível com os materiais empregados nos seus componentes e equipamentos.

@NI O ENI Arnica S 46 é um fluido sintético biodegradável destinado ao uso em sistemas particularmente expostos a perigos de incêndio ou contaminação do terreno, formulado a partir de bases sintéticas (ésteres orgânicos), adequadamente aditivadas (Classificação ISO-L-HFDU), com características de biodegradabilidade (OECD 301B) e alto índice de viscosidade.

Viscosidade a 40 °C: 48 cSt (ISO46)

Índice de viscosidade: 186 Ponto de inflamabilidade: 305°C Ponto de escorrimento: -36°C

Massa volumétrica a 15 °C 0,921 kg/l **BIODEGRADABILIDADE** >70% (OECD301B)

Para obter indicações sobre a possibilidade de aplicação e os intervalos das verificações e de substituição sugeridos para sua aplicação específica, é possível entrar em contato com o Departamento Comercial da OMARLIFT

1.4 O NÍVEL DE SILÊNCIO DO EQUIPAMENTO HIDRÁULICO

O grupo da válvula NL da unidade de controle OMARLIFT dispõe de um kit silenciador patenteado.

As unidades de controle OMARLIFT são particularmente silenciosas:

em condições de trabalho médio, ou seja, com temperatura do óleo de 30/40 °C, pressão de 25/30 bar e ausência de ar no óleo, o nível de ruído está contido dentro dos seguintes limites:

TIPO DE UNIDADE DE CONTROLE	50 Hz	60 Hz
Até 150 l/min:	57 ÷ 59 dB(A)	62 dB(A)
■ De 180 a 300 l/min:	59 ÷ 61 dB(A)	64 dB(A)
■ De 360 a 600 l/min:	60 ÷ 64 dB(A)	67 dB(A)
 HOMELIFT (motor externo) 	62 dB(A)	65 dB(A)

Os valores indicados se referem à fase de subida em alta velocidade.

Os valores de ruído são entendidos como detectados a um metro de distância, à altura da válvula, e se referem às condições dos testes executados na sala de testes da OMARLIFT.

Para ter um equipamento o mais silencioso possível, é necessário:

- a. Usar um trecho de tubo flexível (pelo menos 5/6 metros) para a conexão da unidade de controle ao cilindro.
- b. Isolar os tubos de conexão com borracha espessa a partir dos colares de fixação dos tubos às paredes.
- c. Isolar a cabeça do cilindro com borracha espessa a partir do colar de fixação e o fundo do cilindro a partir do suporte de apoio.
- d. Encher o reservatório até o nível máximo permitido.
- e. Assegurar-se de que não há uma forte presença de ar no óleo.
- f. Se for o caso, faça um expurgo do ar.
- g. Utilizar óleo com o índice de viscosidade mais alto possível: a alta temperatura diminui a viscosidade do óleo, e uma viscosidade baixa demais não lubrifica suficientemente as partes em movimento, o que pode aumentar o nível de ruído.

1.5 MOTORES PARA UNIDADES DE CONTROLE DE ELEVADORES

Os motores elétricos OMARLIFT para elevadores são motores assíncronos de dois polos disponíveis a 50 e 60 Hz, 3CA.

Para as aplicações sob a Diretiva Elevadores, são oferecidos apenas na configuração imersa, ou seja, trabalhando no interior da unidade de controle, imersos no óleo, que também atua como fluido refrigerante, aumentando o desempenho.

As condições de carga, a temperatura e o tipo de óleo empregado determinam, com a mesma tensão, variações na corrente absorvida.

A seguir, são indicados os valores nominais

MOTORES TRIFÁSICOS

POTÊNCIA NOMINAL		Corrente nominal "In" com viscosidade do óleo = 40 cSt				
		230 V 50 Hz	400 V 50 Hz	415 V 50 Hz	208 V 60 Hz	230 V 60 Hz
HP	kW	А	А	А	А	А
4,5	3,3	17	10	9	19	18
6,5	4,7	26	15	15	25	24
8	5,9	29	17	16	31	29
10,5	7,7	33	19	18	40	38
13	9,6	39	22	22	49	47
15	11	47	27	26	58	55
17	12,5	52	29	28	64	61
20	14,7	58	33	32	72	68
25	18,4	73	42	41	86	81
30	22	87	51	50	105	99
40	29,4	117	67	65	136	129
50	36,8	143	82	80	171	162
60	44	176	101	98	194	184
70	51,5	205	118	114	236	215
80	58,8	239	137	133	275	250

ATENÇÃO! OS VALORES DE CORRENTE APRESENTADOS SÃO INDICATIVOS, E NÃO TAXATIVOS; PARA OUTRAS POTÊNCIAS OU TENSÕES, CONSIDERE UMA CORRENTE PROPORCIONAL. EM QUALQUER CASO, SIGA A PLAQUETA DO MOTOR APRESENTADA PELO FABRICANTE.

MOTORES PARA UNIDADES DE CONTROLE HOMELIFT 1.6

As aplicações HOMELIFT sob a Diretiva Máquinas são realizadas tanto com motores imersos quanto com motores externos, sempre com dois polos e 50 ou 60 Hz, 1CA e 3CA.

Para um rendimento melhor com absorções reduzidas de corrente, os motores externos estão mais sujeitos a superaquecimento, permitindo um menor número de ciclos/hora de funcionamento.

Os motores OMARLIFT atendem à classe de funcionamento intermitente S3-10% em um tempo de ciclo de 10 min

POTÊNCIA NOMINAL		230 V 50 Hz 1CA	230 V 50 Hz 3CA	400 V 50 Hz 3CA	230 V 60 Hz 1CA	230 V 60 Hz 3CA	400 V 60 Hz 3CA	IMERSO	EXTERNO
HP	kW	Α	Α	Α	Α	Α	Α		
2	1 -	16	7,8	4,5	18,5	11	6.5	х	
2	1,5	9	6,2	3,6	-	6.2	3,6		х
2.5	1.0	18	11	6,5	20	12	7	Х	
2,5	1,8	13	7,6	4,4	-	7,6	4.4		х
3	2.2	21	12	7	23	14	8	Х	
3	2,2	15	10	5,8	-	11,4	6.6		х
2.5	2.6	24	14	8	27	15	9	Х	
3.5	2.6	-	-	-	1	1	1		х
4	2.0	27	16	9,2	29	17	10	х	
4	2,9	17	13,2	7,6	18	12,8	7,4		х
4,5	3,3	29	17	10	34	18	11	х	
5	3.7	23	-	1	24	1	1		х
5,5	4,0	35	22	13	40	23	13	Х	
6,5	4,8	41	26	15	45	26	15	Х	

Para maiores detalhes sobre a disponibilidade e as combinações, consulte o capítulo 6 HOMELIFT

ATENÇÃO! OS VALORES DE CORRENTE APRESENTADOS SÃO INDICATIVOS, E NÃO TAXATIVOS; PARA OUTRAS POTÊNCIAS OU TENSÕES, CONSIDERE UMA CORRENTE PROPORCIONAL. EM QUALQUER CASO, SIGA A PLAQUETA DO MOTOR APRESENTADA PELO FABRICANTE.

1.7 CORRENTES DE ARRANQUE

As correntes de arranque são sensivelmente superiores aos valores nominais e podem ser estimadas da seguinte maneira:

MOTORES IMERSOS

Corrente de arranque para a partida direta Corrente de arranque para a partida $\lambda - \Delta$ Corrente de arranque com soft starter

Is
$$\approx$$
 2,8 \div 3,5 In
Is \approx 1,6 \div 2,0 In
Is \approx 1,4 \div 1,6 In

MOTORES EXTERNOS

Corrente de arrangue para partida direta

Is
$$\approx$$
 2,5 In

ATENÇÃO: os valores acima mencionados são indicativos; consulte as características técnicas e a plaqueta do motor.

2 COMPONENTES HIDRÁULICOS

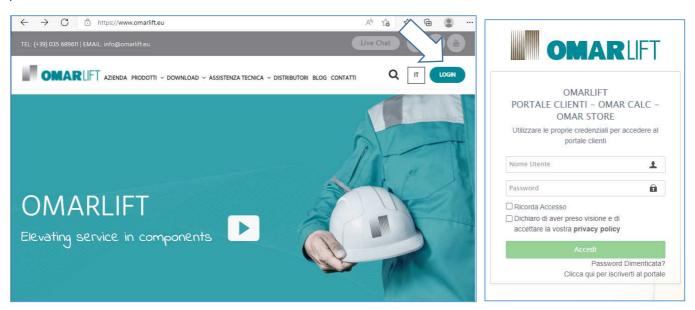
2.1 SELEÇÃO DOS COMPONENTES HIDRÁULICOS

Para selecionar corretamente o(s) cilindro(s) e a unidade de controle de um elevador oleodinâmico, é necessário conhecer os seguintes dados

DADOS DE INPUT:

- Capacidade útil da cabine.
- Peso total da cabine e da arcada.
- Peso total da polia e dos cabos (somente para os cilindros indiretos).
- Curso útil + extra-curso total da cabine.
- Distância entre o eixo da polia e seu ponto de apoio ao cilindro (somente para indiretos).
- Sistema de instalação (indireto, direto, um ou mais cilindros).
- Velocidade nominal da cabine.
- Tensão e frequência exigidas para o motor, tensão das eletroválvulas.
- Tipo de arranque do motor (direto, estrela/triângulo ou soft-starter).

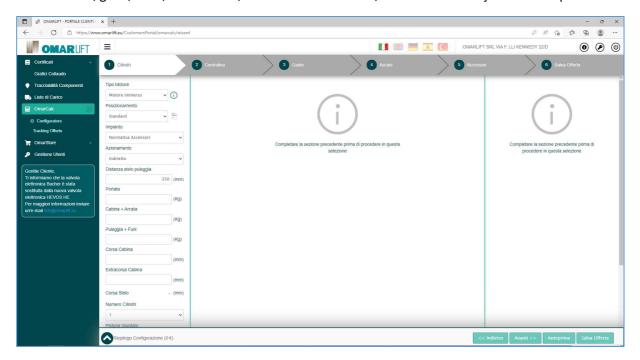
Os valores geralmente usados para o extra-curso total da cabine são de cerca de 500 mm para sistemas indiretos e de cerca de 350 mm para sistemas diretos.


No caso de cilindros telescópicos, o extra-curso total pode ser estimado em:

- 500 mm (mínimo necessário 250 mm) para telescópicos de dois estágios.
- 600 mm (mínimo necessário 350 mm) para telescópicos de três estágios.

CONFIGURADOR ONLINE:

Uma vez conhecidos os dados de input, é possível proceder então à seleção do cilindro e da unidade de controle etc. utilizando diretamente o configurador online disponível no site da OMARLIFT (www.omarlift.eu)


Acesse a área reservada com o botão LOGIN, inserindo suas credenciais. Na primeira vez, será necessário registrar-se no portal, fornecendo um nome de usuário e uma senha.

Uma vez acessado o configurador, preencha as casas com os dados de input, selecione *Auto* para a identificação automática das opções disponíveis, escolha a opção de seu interesse e navegue pelos menus com os botões de avanço localizados na parte inferior da página.

Assim, será possível visualizar as opções disponíveis e o respectivo preço, e escolher todos os componentes, como cilindro, unidade de controle, guias, além, se for o caso, de arcadas e acessórios, elaborando um orçamento completo.

CONFIGURADOR MANUAL:

Ou então, a escolha do cilindro pode ser feita manualmente, utilizando-se as tabelas do Catálogo Geral apresentadas a seguir. A partir do peso total e do comprimento, escolhe-se o tipo de cilindro e a pressão máxima; a partir desta, juntamente da velocidade esperada, dimensiona-se a unidade de controle (bomba e motor) e, por fim, o tipo de reservatório.

2.2 DIMENSIONAMENTO DO CILINDRO

- a) CURSO DO(S) CILINDRO(S)
- Cilindros indiretos, dimensões 2:1: Curso total do cilindro = ½ (curso útil + extra-curso da cabine).
- Cilindros diretos centrais ou laterais:
 Curso total do cilindro = curso útil + extra-curso da cabine.
- b) DIÂMETRO E ESPESSURA DA HASTE DO CILINDRO
 - O diâmetro e a espessura da haste devem ser selecionados de modo a respeitar a segurança no pico de carga e os limites de pressão.

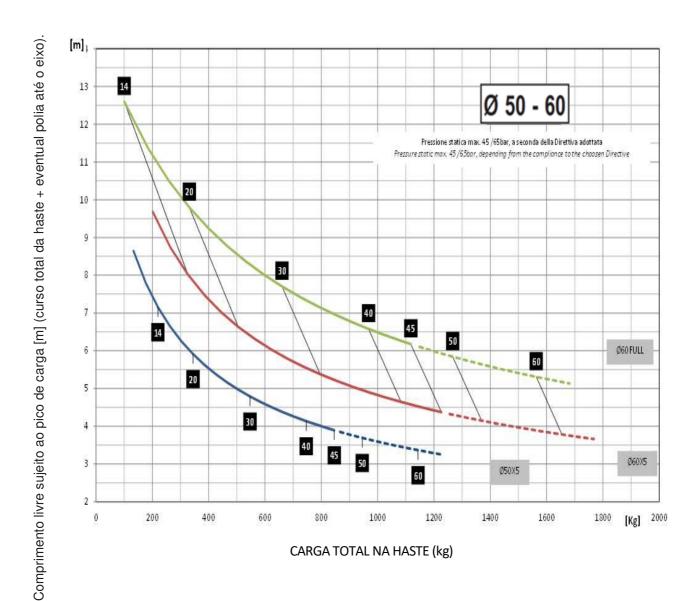
Esta escolha é facilmente realizada utilizando-se os diagramas de segurança no pico de carga em função de:

- Carga total efetiva na haste.
- Comprimento livre para o pico de carga.

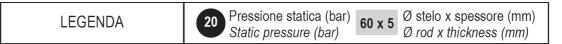
Para verificar a segurança, é sempre necessário escolher os pontos abaixo das curvas dos gráficos do pico de carga.

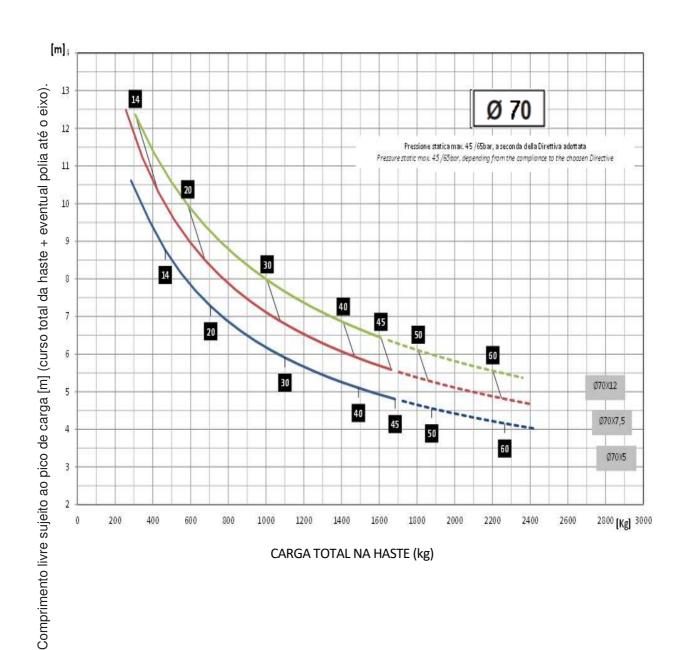
A pressão estática máxima não deve superar o valor indicado ou presumido a partir da curva do produto em questão. Este valor de pressão corresponde à pressão estática máxima admitida pelas espessuras das camisas de acordo com a normativa em vigor.

A pressão estática mínima com a cabine vazia não deve ser inferior a 12 bar.

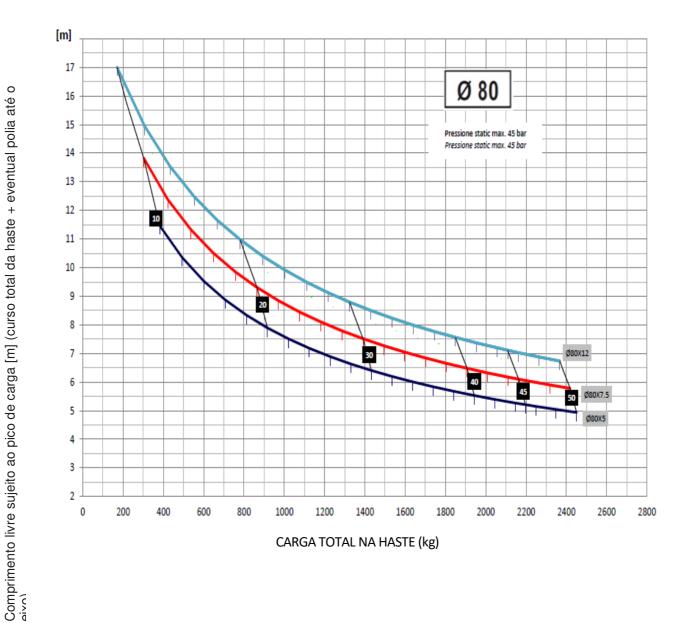

Este valor garante o funcionamento correto do equipamento em descida, se as perdas de carga por atrito e ao longo dos tubos de envio não superarem 3-4 bar. Se estiverem previstas perdas mais altas, é necessário aumentar a pressão mínima e adequar a potência do motor.

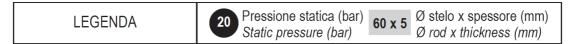
2.3 DIAGRAMA DE SEGURANÇA DAS HASTES NO PICO DE CARGA: CILINDROS C97, HC2

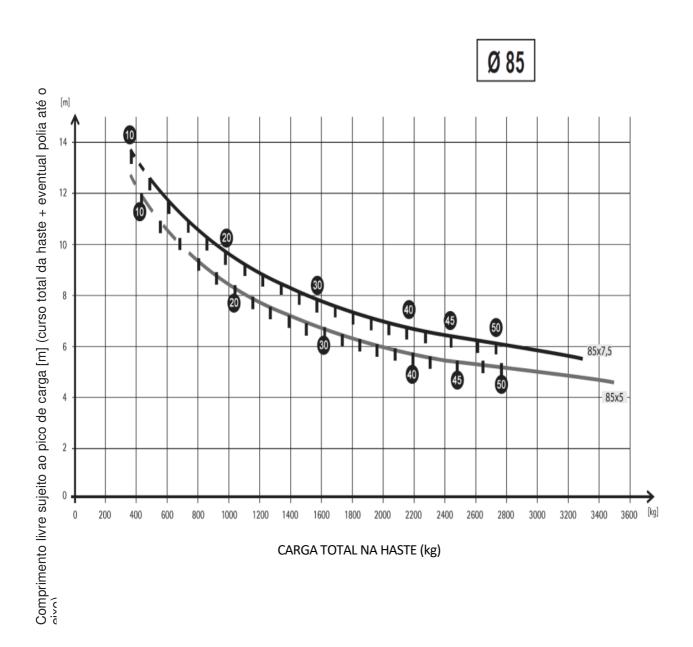

Diagramas de segurança das hastes no pico de carga obtidos de acordo com as normativas EN81-2, EN81-20/50 CILINDROS C97, HC2


> Pressione statica (bar) 60 x 5 Ø stelo x spessore (mm) **LEGENDA** Static pressure (bar) Ø rod x thickness (mm)

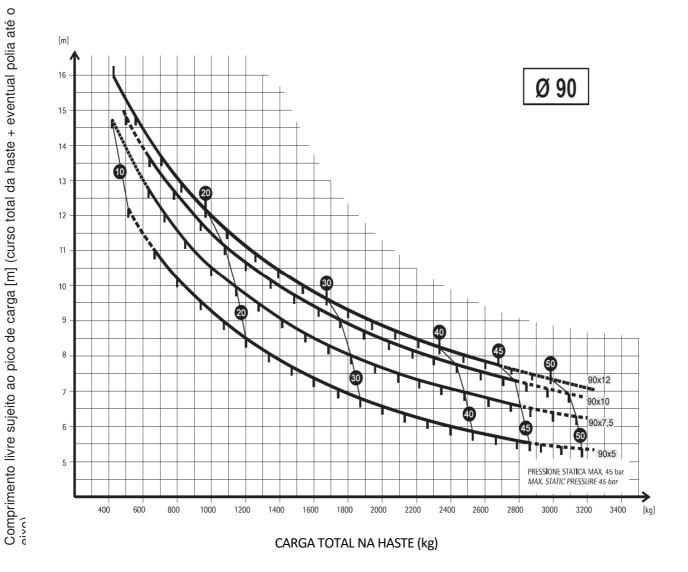
CILINDROS C97, HC2

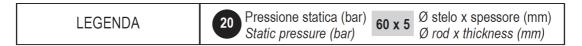


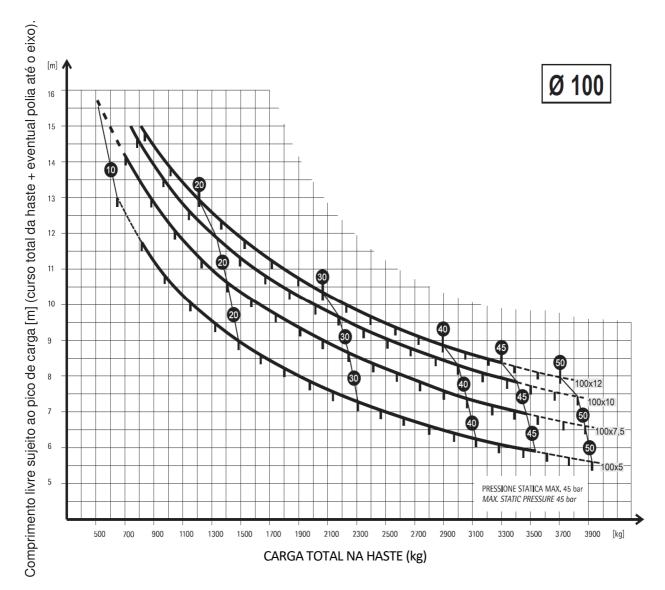




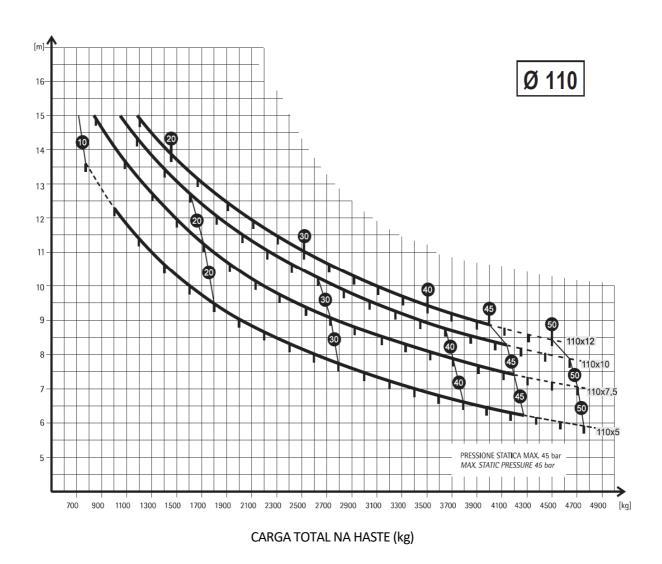
Pressione statica (bar) 60 x 5 Ø stelo x spessore (mm) **LEGENDA** Static pressure (bar) Ø rod x thickness (mm)

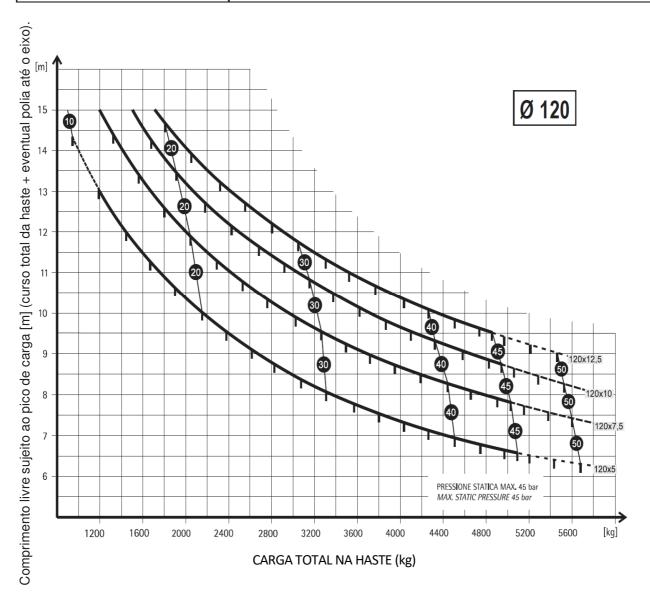






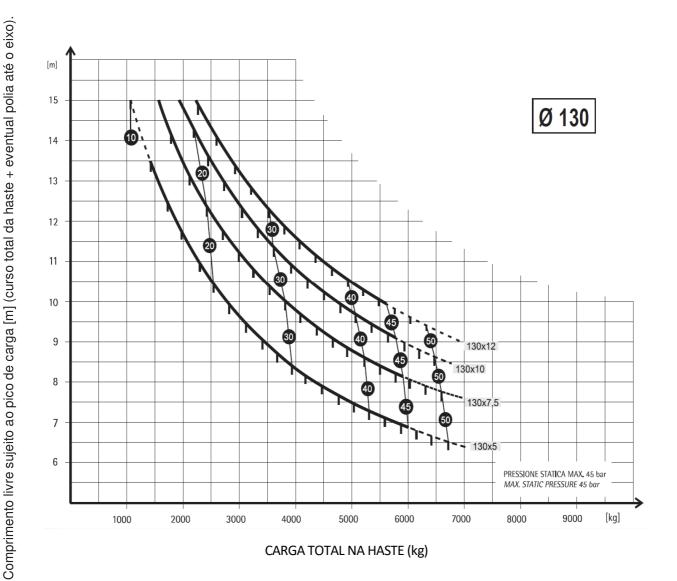
Pressione statica (bar) 60 x 5 Ø stelo x spessore (mm) **LEGENDA** Static pressure (bar) Ø rod x thickness (mm)

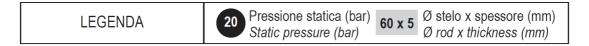


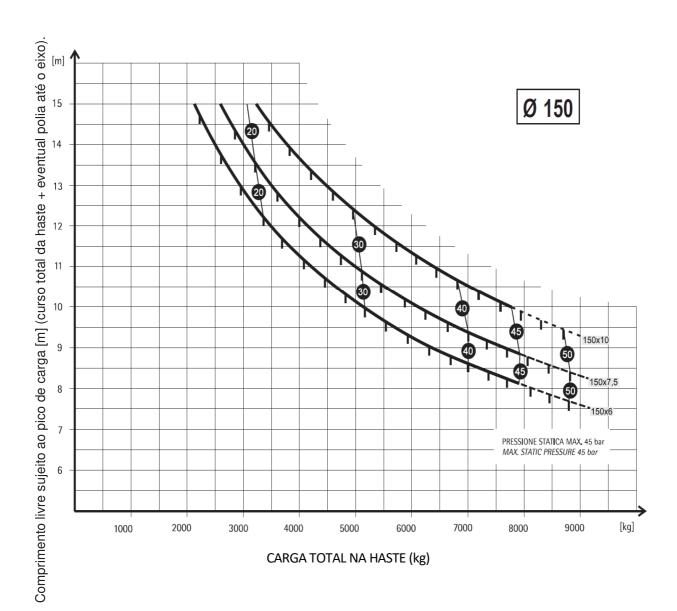

Pressione statica (bar) 60 x 5 Ø stelo x spessore (mm) **LEGENDA** Static pressure (bar) Ø rod x thickness (mm)

Comprimento livre sujeito ao pico de carga [m] (curso total da haste + eventual polia até o eixo).

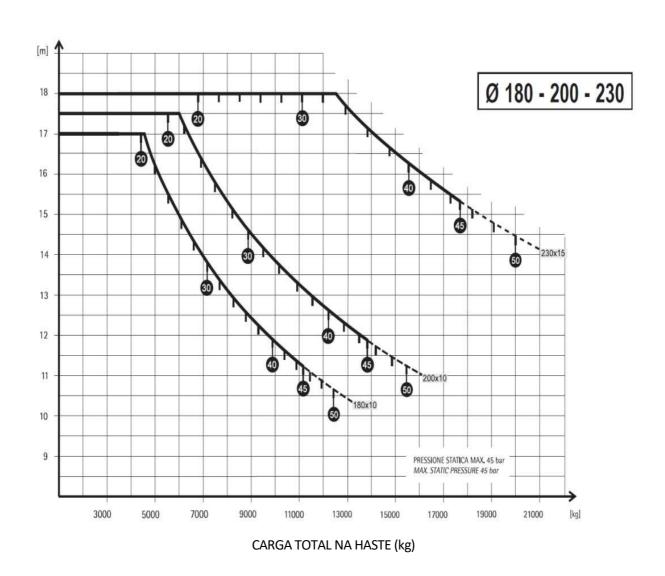
Ø stelo x spessore (mm) Pressione statica (bar) 20 **LEGENDA** 60 x 5 Static pressure (bar) Ø rod x thickness (mm)



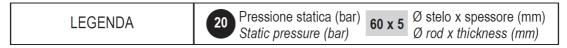

LEGENDA


Pressione statica (bar) 60 x 5 Static pressure (bar)

Ø stelo x spessore (mm) Ø rod x thickness (mm)



Pressione statica (bar) 60 x 5 Ø stelo x spessore (mm) **LEGENDA** Static pressure (bar) Ø rod x thickness (mm)



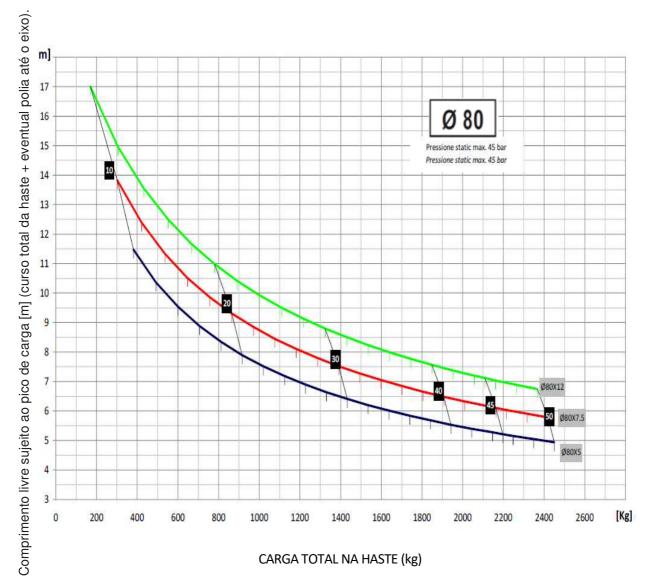
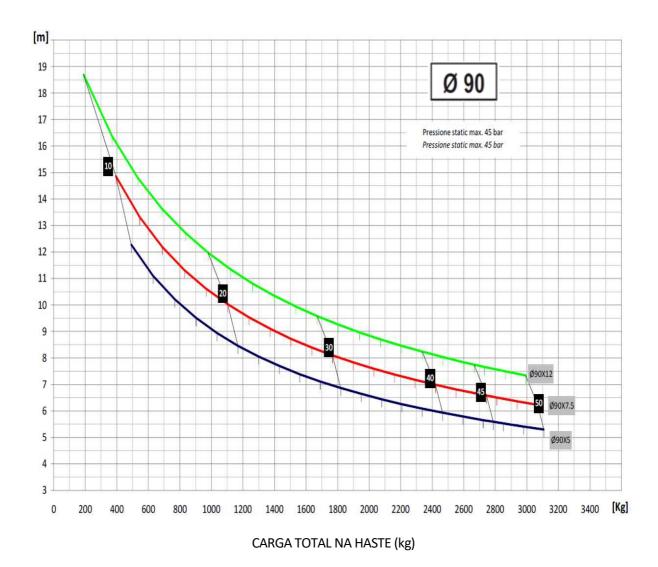
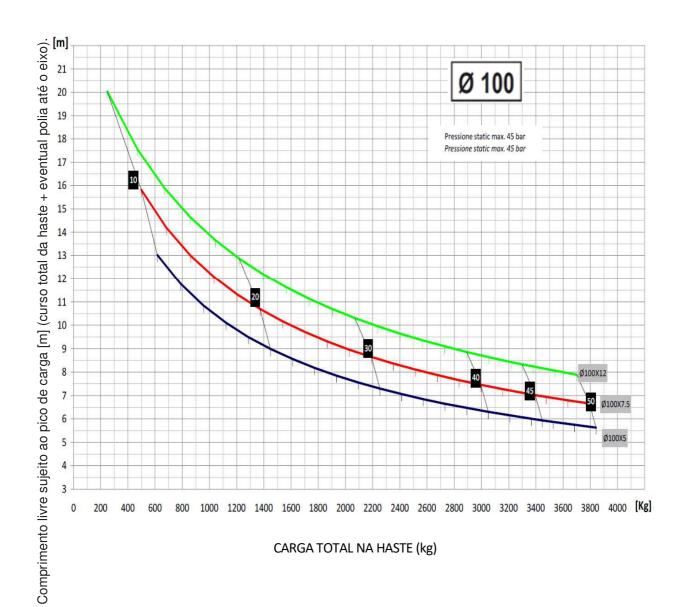
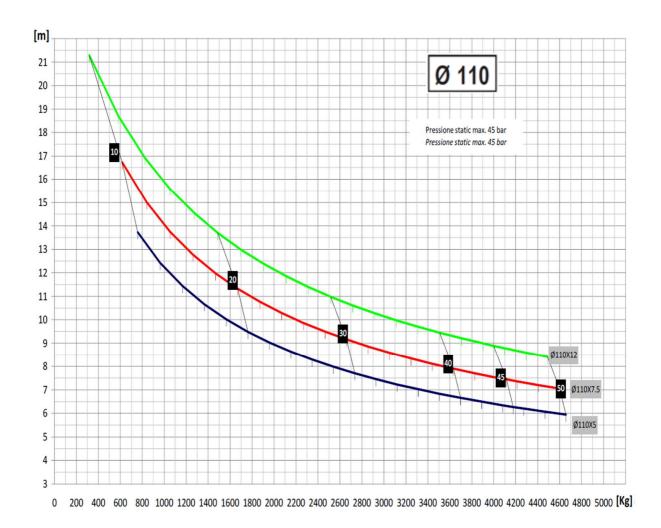

Comprimento livre sujeito ao pico de carga [m] (curso total da haste + eventual polia até o eixo).

DIAGRAMA DE SEGURANÇA DAS HASTES NO PICO DE CARGA: CILINDRO CS


CILINDRO CS


Pressione statica (bar) 60 x 5 Ø stelo x spessore (mm) **LEGENDA** Static pressure (bar) Ø rod x thickness (mm)

Comprimento livre sujeito ao pico de carga [m] (curso total da haste + eventual polia até o eixo).


Pressione statica (bar) 60 x 5 Ø stelo x spessore (mm) **LEGENDA** Static pressure (bar) Ø rod x thickness (mm)

Pressione statica (bar) 60 x 5 Ø stelo x spessore (mm) **LEGENDA** Static pressure (bar) Ø rod x thickness (mm)

CARGA TOTAL NA HASTE (kg)

SELEÇÃO DO MOTOR – BOMBA 50 Hz

0,25

0,19

0,30

0,23

50 Hz.

200

230

DI/	NL 210 - 1 1/4"													NL 210 - 1 1/2"									NL 380 - 1 1/2"							NL 380 - 2"				NL 600 - 2"							VAL	/OLA								
DIAMETRO STELO (mm)	55				75			100				125	<u> </u>				150				18	0				210				250				300			38	80			5	500				60	10		POMP	A (I/min)
ELO	4,5	6,5	8	6,5	8 1	0,5 6	,5 8	10	,5 13	8	10,5	5 13	15	17	10,5	13	15	17	20	15	17	20	25	15	17	20	25	30 2	20	25 3	0 4) 2	0 25	5 30	40	25	30	40	50	30	40	50	60 7	70 4	0 5	0 6	0 70	0 80	HP M	OTORE
(M)	3,3	4,8	5,9	4,8	5,9 7	,7 4	,8 5,9	9 7,	7 9,6	5,9	7,7	9,6	11,0	12,5	7,7	9,6	11,0	12,5	14,7	11,0	12,5	14,7	18,4	1,0	12,5	14,7 1	8,4 2	2,1 1	4,7 1	8,4 22	,1 29	,4 14	,7 18,	,4 22,:	29,4	18,4	22,1	29,4	36,8	22,1	29,4	36,8	44,1 5:	1,5 29	36	,8 44	,1 51,	,5 58,	KW N	OTORE
٤	25	38	45	27	37	45 1	19 27	7 3	7 45	18	29	35	42	45	24	31	36	40	45	29	33	38	45	23	27	32	40	45	27	34 4	0 4	5 2	2 28	34	45	21	26	37	45	18	26	34	41	45 1	.8 2	5 3	2 38	8 45		atica max. ar)
50	(0,44		0	,61		(0,81]		
60	(0,31		0),42		(0,56			0,70			0,84																																	_			
70	(0,23		0	,31		(0,41				0,51	l				0,62			0,74			,74			0,86																								
80	(0,17		0),24		(0,32				0,39)				0,47				0,5	57		0,66				0,79																				_	TÀ STELO	
85	(0,15		0),21		(0,28				0,35	5				0,42				0,5	0				0,59				0,70			(0,84															(n	ı/s)
90	(0,14		0),19		(0,25				0,31	l				0,37				0,4	15				0,52				0,62			(0,75															MOTO	II 2 POLI
100	(0,11		0),15		(0,20				0,25	5				0,30				0,3	16				0,42				0,50			(0,61			0,7	77												g/min
110	-	0,09		0),13		(0,17				0,21	l				0,25				0,3	10	4			0,35				0,42			(0,50			0,6	63			C),83							1	~
120	- (0,08		0),11		(0,14				0,18	3				0,21				0,2	!5				0,29				0,35			(0,42			0,5	53			C),70				0,8	34			
130	-	0,07		0	0,09		(0,12				0,15	5				0,18				0,2	1	4			0,25				0,30			(0,36			0,4	45			C),60				0,	72		1	
150				0	,07		(0,09		0,11			0,13						0,16			0,19					0,22			0,27		0,34				C),45				0,5	54								
180							0,06 0,08			0,09						0,1	.1		0,13						0,16			0,19			0,24				0,31					0,3	37									

0,11

0,08

0,13

0,10

0,15

0,11

0,19

0,14

Considerando-se a variabilidade das características de realização dos equipamentos, das condições operacionais de pressão e temperatura e das tolerâncias construtivas dos motores e das bombas, as velocidades detectáveis em operação podem diferir em até 15% com relação ao que é indicado na tabela.

0,09

0,07

0,06

0,08

0,06

9
A
-11

DIAMI	NL 210 - 1 1/4"												NL 210 - 1 1/2"										NL 380 - 1 1/2"								NL 3	80 - 2'	"		NL 600 - 2"							VALVOLA				
METRO ST	65 90				120				150				180						215					250				30)		;	360			455	5			60	00		POMPA (I/min)				
ELO (mm)	_						_		-			-										_											30 4 22,1 29			_	_					40 5 9,4 36			5 58,8	
3	25	38	3 45	19	9 27	37	45	20	27	36 46	5 2	22 2	8 3	2 3	9 45	22	27	31	35	45	21	26	30	37	45	19	24	32	38	45	20	25	32 4	5 2	0 26	35	45	20	28	35	45 :	17 2	4 3	0 36	5 45	Press. Statica max. (bar)
50		0,5				0,71			0,94																																					
60 70		0,3				0,49			0,65 0,82 0,48 0,60			0,72							0,86											-												-				
80		0,2				0,30			0,40				0,4				0,72					0,66						0.77																		1
85		0,1				0,24			0,33				0,4					0,49					0,58					0,68				0,8	2													VELOCITÀ STELO (m/s)
90		0,1	.6			0,22			0,29)			0,3	36				0,44	ļ				0,52					0,61				0,7	3													
100		0,1	.3			0,18			0,24	ļ			0,2	29				0,35	;				0,42					0,49				0,5	9		(),71										MOTORI 2 POLI
110		0,1	.1			0,15			0,19)			0,2	24				0,29)				0,35					0,41				0,4	9	_	(),58			0,74	4						3300 g/min
120		0,0				0,12			0,16				0,2					0,25					0,29					0,34				0,4),49			0,62				0,8			4
130		0,0)8		0,10 0,14 0,17						0,21					0,25					0,29				0,3		+),42		0,53					0,7										
150 180				0,08 0,10 0,13 0,07 0,09				0,16 0,11						0,19 0,13				0,22					0,26 0,18			+	0,31			0,40				0,52				-								
200						0,07 0,09				0,09						0,11					0,12					0,1		-	0,18				0,22			0,29				60.11						
230								3,01					0,07				T	0,08						0,09		0,11		0,13				0,1				0,2			60 Hz.							

Considerando-se a variabilidade das características de realização dos equipamentos, das condições operacionais de pressão e temperatura e das tolerâncias construtivas dos motores e das bombas, as velocidades detectáveis em operação podem diferir em até 15% com relação ao que é indicado na tabela.

8750/11000

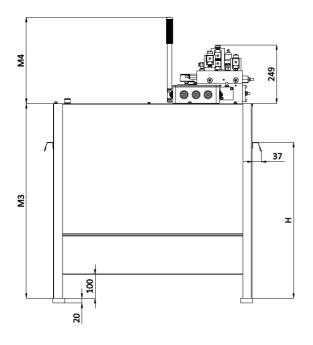
5000/7000

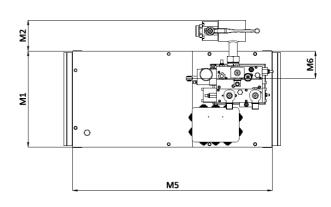
TIPC	DE RESERVA	TÓRIO	50/S	110/S	135/S	210/S	320/S	450	680	TIPO DE
	BOMBA		MÁX 35 l/min	MÁX 15	0 l/min	MÁX 210 l/min	MÁX 300 I/min	MÁX 380 l/min	MÁX 600 l/min	вомва
	SAÍDA		1/2" & 3/4"	3/4" & 1"1/4	1"1/4	1"1/4 & 1"1/2	1"1/4 & 1" 1/2	1" 1/2 & 2"	2"	SAÍDA
DIÂMETRO	ÓLEO NE	ECESSÁRIO	20	35	35	50	90	155	210	Óleo para cobertura do motor (I)
DA HASTE (mm)	Movimento (I/metro)	Enchimento (I/metro)	23	65	100	140	220	310	490	Óleo para movimento (I)
50	2	3,1	5250/11500	8000	8000					
60	3	4,5	4100/7600	9000	9000	9000				
70	3,8	5	3000/6000	7250/11000	11000	11000				
80	5	3,8	3000/4600	7250/13000	11000/16000	11000/18000				
85	5,7	4,7		6250/11500	9650/15500	11250/16500	13750/19000			
90	6,4	5,7		5250/10000	8250/15000	11500/15000	14000/20000			
100	7,8	5,6		4750/8000	7250/12500	10500/15000	15000/18000	14000/22000		Curso máx da HASTE
110	9,5	6,4		4000/6500	6250/10000	8750/14000	13500/17000	15000/22000		(mm)
120	11,3	6,1		3750/5500	5500/8500	8000/10500	12250/16000	17000/22000		
130	13,3	8,5		3000/4500	4500/7000	6500/10000	9750/15000	13750/22000	19000/34000	
150	17,7	8,3		2500/3500	3600/5500	5250/7500	8250/12000	11750/16500	18000/26000	
180	25,4	15,6				3400/5500	5250/8000	7250/11500	11500/18500	
200	31,4	18,9					4250/6500	6000/9000	9500/14000	

41,5 DADOS APENAS PARA FINS COMERCIAIS

19,4

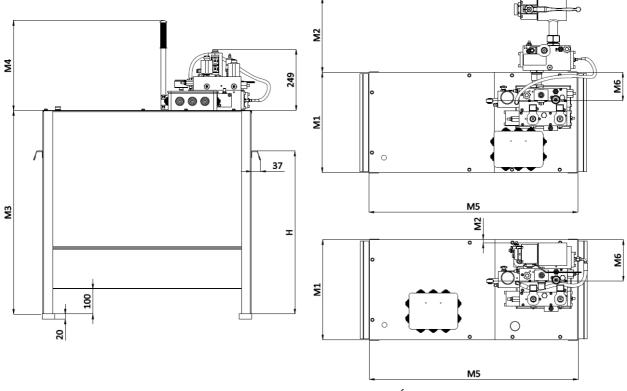
ENCHIMENTO MOVIMENTO


> cheio, o curso máximo da 5250: com o reservatório haste que se pode realizar.


haste com o reabastecimento de óleo. 11500: o máximo curso da Exemplo 5250/11500

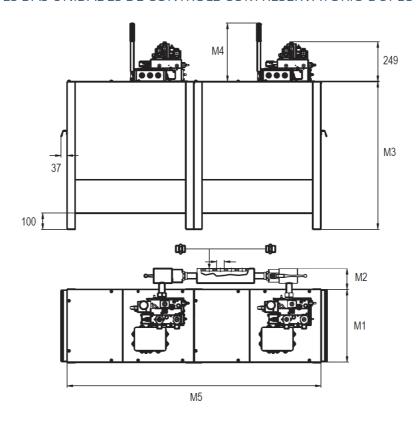
230

2.8 DIMENSÕES E MEDIDAS DAS UNIDADES DE CONTROLE SEM HDU



					D	IMENSÕE:	6 [mm]			
TIPO DE VÁLVULA	TIPO DE RESERVATÓ RIO	VOLUME ÚTIL <i>litros</i>	M1	M2 FILTRO HORIZ.	M2 FILTRO VERT.	M3	M4	M5	M6	Н
	110/S	65	300	95	0	702	360	700	140	640
	135/S	100	300	95	0	902	360	700	155	640
NL - 210	210/S	140	400	129	51	810	360	830	110	650
	320/S	220	460	160	70	950	360	950	110	650
	450	310	700	150	-	952	360	1000	105	650
	320/S	220	460	160	70	950	360	950	125	650
NL - 380	450	310	700	150	-	952	360	1000	130	650
	680	490	800	140	-	1002	360	1250	165	650
	680	490	800	140	-	1002	360	1250	165	650
NL - 600	900	690	800	140	-	1202	360	1250	165	650
	1000	790	800	140	-	1302	360	1250	165	650

2.9 DIMENSÕES E MEDIDAS DAS UNIDADES DE CONTROLE COM HDU (DISPOSITIVO UCM)



VÁLVULA NL+HDU INTEGRADA

	TIPO DE	VOLUM			DIN	MENSÕES	mm]			
TIPO DE VÁLVULA	RESERVATÓRI O	E ÚTIL litros	M1	M2 FILTRO HORIZ.	M2 FILTRO VERT.	МЗ	M4	M5	M6	Н
	110/S	65	300	-	0	702	360	700	162	640
NL – 210 +	135/S	100	300	-	0	902	360	700	162	640
HDU	210/S	140	400	-	0	810	360	830	165	650
INTEGRADA	320/S	220	460	-	0	950	360	950	320	650
	450	310	700	-	0	952	360	1000	310	650
	110/S	65	300	230	150	702	360	700	161	640
NL – 210 +	135/S	100	300	230	150	902	360	700	161	640
HDU STAND	210/S	140	400	305	80	810	360	830	114	650
ALONE	320/S	220	460	100	15	950	360	950	320	650
	450	310	700	130	40	952	360	1000	310	650
NL-380+	320/S	220	460	175	85	950	360	950	295	650
HDU STAND	450	310	700	210	95	952	360	1000	285	650
ALONE	680	490	800	170	-	1002	360	1250	357	650
NL – 600 +	680	490	800	180	-	1002	360	1250	478	650
HDU STAND	900	690	800	180	-	1202	360	1250	478	650
ALONE	1000	790	800	180	-	1302	360	1250	478	650

2.10 DIMENSÕES DAS UNIDADES DE CONTROLE COM RESERVATÓRIO DUPLO

			D	IMENSÕES	[mm]		
TIPO DE VÁLVULA	TIPO DE RESERVATÓRIO	M1	M2 SEM HDU FILTRO HORIZ.	M2 HDU	M3	M4	M5
	110/S	300	95	0	702	360	1400
240 (11011	135/S	300	95	0	902	360	1400
NL – 210 (HDU INTEGRADA)	210/S	400	129	0	810	360	1660
INTEGRADA)	320/S	460	160	0	950	360	1900
	450	700	150	0	952	360	2000
NL – 380 (HDU	320/S	460	160	175	950	360	1900
STAND	450	700	150	210	952	360	2000
ALONE)	680	800	140	170	1002	360	2500
NL – 600	680	800	150	180	1002	360	2500
(HDU STAND	900	800	150	180	1202	360	2500
ALONE)	1000	800	150	180	1302	360	2500

2-23

2.11 VÁLVULAS DE SEGURANÇA

2.11.1 VÁLVULAS PARAQUEDAS (VP)

Válvulas de segurança em caso de quebra das tubulações, disponíveis em diferentes dimensões (3/4", 1" ¼, 1" ½, 2")

• Com Certificação TÜV SUD em conformidade com as normativas EN81-2 e EN81-20/50

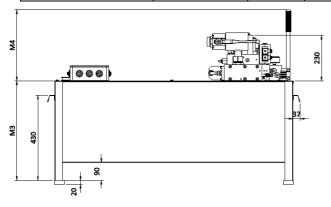
MODELO	INTERVALO	VISCOSIDA	PRESSÃO	VAZÃO
DA	TEMP	DE DO		I/min
VÁLVULA		ÓLEO		
VD UC 24	0-65 °C	25-400 cSt	10-80 bar	5-55
VP HC 34	0-65 °C	25-400 cSt	10-80 bar	5-55
VP 114	0-65 °C	25-400 cSt	10-80 bar	35-150
VP 114	0-65 °C	25-400 cSt	10-80 bar	35-150
VP 112	0-65 °C	25-400 cSt	10-80 bar	70-300
VPIIZ	0-65 °C	25-400 cSt	10-80 bar	70-300
VD 200	0-65 °C	25-400 cSt	10-60 bar	150-600
VP 200	0-65 °C	25-400 cSt	10-60 bar	150-600

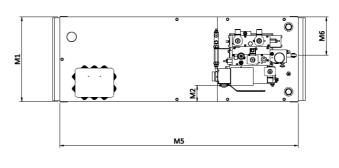
2.11.2 VÁLVULAS DE PREVENÇÃO UCM (HDU)

- Dispositivo contra movimentos descontrolados, disponível nas configurações INTEGRADA e STAND ALONE, inclusive para a montagem em unidades de controle não produzidas pela OMARLIFT
- Com certificação TÜV SUD em conformidade com as normativas EN81-2 e EN81-20/50 em configuração frenante ou redundante

MOD VÁLV	VERSÃO	INTERV TEMP	VISCOS ÓLEO	PRESS	VAZÃO I/min
HDU	Integrada	0-65 °C	25-400 cSt	10-50 bar	8-55
35	Stand alone	0-65 °C	25-400 cSt	10-50 bar	8-55
HDU 210	Integrada	0-65 °C	25-400 cSt	10-45 bar	55-250
HDU 210	Stand alone	0-65 °C	25-400 cSt	10-45 bar	55-250
	Integrada	-	-	-	-
HDU 380	Stand alone	0-65 °C	25-400 cSt	10-45 bar	250-450
	Integrada	-	-	- 1	-
HDU 600	Stand alone	0-65 °C	25-400 cSt	10-45 bar	450-600

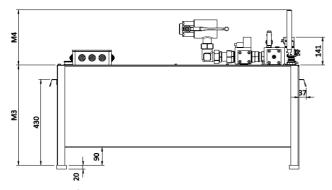
2.12 UNIDADES DE CONTROLE MRL

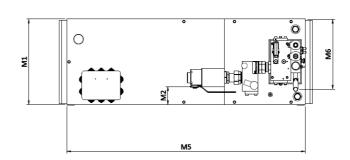

As unidades de controle Machine Room Less (MRL) são específicas para instalações sem sala de máquinas.


2.12.1 APLICAÇÕES EM FOSSO (horizontal)

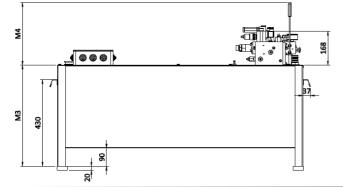
São unidades de controle de dimensões reduzidas em altura, mas ao mesmo tempo garantindo uma discreta quantidade de óleo, projetadas para o posicionamento no fundo do fosso e disponíveis com válvula HC, HI ou NL, com e sem UCM.

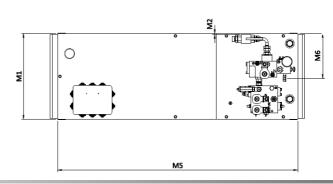
• Válvula NL com HDU


TIPO DE VÁLVULA	LITROS ÚTEIS	M1	M3	M4	M5	M6
NL	77	430	500	360	1200	190



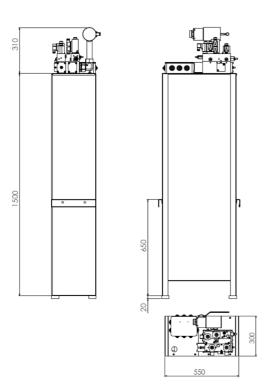
Válvula HI com HDU


TIPO DE VÁLVULA	LITROS ÚTEIS	M1	M3	M4	M5	M6
HI	77	430	500	360	1200	190



Válvula HC com HDU

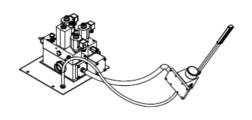
TIPO DE VÁLVULA	LITROS ÚTEIS	M1	M3	M4	M5	M6
НС	77	430	500	360	1200	190



2.12.2 APLICAÇÕES EM VÃO (vertical)

Unidades de controle compactas com a possibilidade de instalação em vão entre as guias e uma discreta quantidade de óleo para o movimento.

DIMENSÕES E MEDIDAS DA UNIDADE DE CONTROLE



Curso Máximo da Haste - Óleo Necessário - Saída da Tubulação

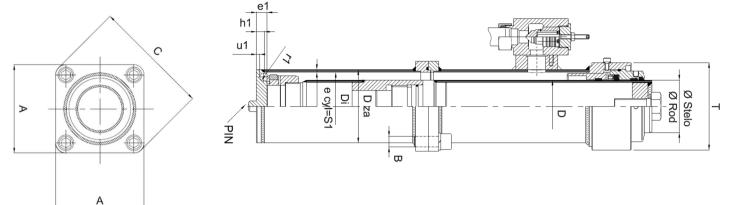
TIPO SEI	RBATOIO / TA	NK TYPE	MRL	TIPO SERBATOIO / TANK TYPE
F	OMPA / PUM	•	MAX 210 I/min	POMPA / PUMP
US	SCITA / OUTLE	T	1"1/4 1"1/2	USCITA / OUTLET
STELO (mm)	OIL NEC	ESSARIO ESSARY	130	Olio per Copertura Motore (I) Oil for Motor Coverage (I)
ROD DIAMETER (mm)	Movimento Movement (l/metro)	Riempimento Filling (I/metro)	80	Olio per Movimento (I) Oil for Movement (I)
50	2	3.1	8000	
60	3	4.5	10000	
70	3.8	5	9000/11000	E (E
80	5	3.8	9000(11000*)/12000	STELO (mm) Stroke (mm)
85	5.7	4.7	7500/13000	三 %
90	6.4	5.7	6500(8500*)/12500	
100	7.8	5.6	6000(7000*)/10000	ла 20
110	9.5	6.4	5000(6000*)/8250	Corsa max Max ROD
120	11.3	6.1	4500/7000	Co
130	13.3	8.5	3500/6000	
150	17.7	8.3	3000/4500	

^{*} Cilindro tipo CS - CS Cylinder type

Bomba de mão remota com tubos e conexões

SELEÇÃO DO MOTOR - BOMBA 50 Hz

RC DIAN									NL2	210 - 1	1/4"											I	NL210	- 1 1/2				VALVOLA VALVE SIZE
ROD DIAMI		55			75			10	00			1:	25				150				18	30			2	10		POMPA (I/min) PUMP (I/min)
STE	4.5	6.5	8	6.5	8	10.5	6.5	8	10.5	13	8	10.5	13	15	10.5	13	15	17	20	15	17	20	25	15	17	20	25	MOTORE (HP)
[2 m	3.3	4.7	5.8	4.7	5.8	7.7	4.7	5.8	7.7	9.5	5.8	7.7	9.5	11	7.7	9.5	11	12.5	14.7	11	12.5	14.7	18.3	11	12.5	14.7	18.3	MOTORE (kW)
(mm)	25	38	45	27	37	45	19	27	37	45	22	29	36	45	24	31	36	40	45	29	33	38	45	23	27	32	40	Press. Statica Max. (bar) Max. Static Pressure (bar)
50		0.45			0.61			0.81																				
60		0.31			0.43				58			0.					0.85											VELOCITA' STELO (m/s)
70		0.23			0.32				43				53				0.62					75				86		MOTORI 2 poli 2750g/min
80		0.18			0.25				32				41				0.48				0.					68		
85		0.16			0.22				28				37				0.43				0.				0.			ROD SPEED (m/s)
90		0.14			0.19				26				32				0.38				0.					54		2 POLE MOTOR 2750
100		0.12			0.16			0.21					26				0.31				0.					44		rpmin
110		0.10			0.13		0.18					22				0.26				0.					36			
120		0.08			0.11		0.15					19				0.22			0.26				0.31					
130		0.07			0.10		0.13		0.16		0.19			0.22				0.26				50 Hz.						
150					0.07 0.10					0.	12				0.14				0.	17			0.	20		30 TIZ.		


SELEÇÃO DO MOTOR - BOMBA 60 Hz

130 150					0,	07			0,			0,13 0,09					16 11		0,19 0,13				60 Hz.		
120		0,07			0,	10			0,	14		0,18				0,	21		0,25						
110		0,08			0,	12			0,	17		0,21				0,	25			0,3			•		
100		0,10			0,	14			0,	20				0,25				0,	30			0,3	36		2 POLE MOTOR 2750 rpmin
90		0,13			0,	18			0,	24				0,30				0,	36			0,4	43		ROD SPEED (m/s)
85		0,15				21				30				0,37					45			0,5	54		,
80		0,20				28			0,					0,47				0,	57			0,6	38		MOTORI 2 poli 2750g/min
70		0,25				37			0,					0,61			0.74				0,88				VELOCITA' STELO (m/s)
60		0,35				50			0,				0,84												
50		0,50			0.	70			0,	93															man crairo i resoure (bar)
(mm)	25	38	45	19	27	37	45	20	27	36	45	22	28	32	39	45	22	27	35	45	21	30	37	45	Press. Statica Max. (bar) Max. Static Pressure (bar)
R (mm) LO (mm	4.4	5.8	7.7	4.4	5.8	7.7	9.5	5.8	7.7	9.5	11	7.7	9.5	11	12.5	14.7	11	12.5	14.7	18.3	11	12.5	14.7	18.3	()
NAMETER (1	6	8	10.5	6	8	10.5	13	8	10.5	13	15	10.5	13	15	17	20	15	17	20	25	15	17	20	25	MOTORE (HP)
ROD DIAM DIAMETRO		65			9	90			12	20				150				1	80			21	5		POMPA (I/min) PUMP (I/min)
RO							N	IL210	- 1 1/4	i"									N	L210 -	1 1/2	."			VALVOLA VALVE SIZE

ω TABELAS DE DIMENSÕES, DADOS TÉCNICOS E ESQUEMAS DA VÁLVULA

CILINDROS C97 — DIMENSÕES DA CAMISA, FUNDO E JUNTAS DOS CILINDROS

	_		-												
	D	Dza	Di	S1	r1	u1	h1	e1	Α	CH. PARAFUS	В	C mm	T mm	PESO DO FLANGE kg	PESO DA JUNTA DA HASTE kg (MÁX)
C97	80	114,3	106,3	4	5	5,5	11	16	140 x 140	14	M16	185	150	5	4
C97	85	114,3	106,3	4	5	5,5	11	16	140 x 140	14	M16	185	150	5	4
C97	90	133	124	4,5	7,5	6,5	15	20	163 x 163	14	M18	215	157	5	6
C97	100	139,7	130,7	4,5	7,5	6,5	15	20	172 x 172	17	M20	228	166	6	7
C97	110	152,4	142,4	5	6,5	7,5	15	20	184 x 184	17	M22	244	175	8	7
C97	120	159	149	5	6,5	7,5	15	20	200 x 200	17	M22	264	200	10	7
C97	130	177,8	166,6	5,6	7	8	16	21	222 x 222	19	M24	293	216	11	12
C97	150	193,7	181,9	5,9	6,2	8,8	16	21	232 x 232	19	M27	307	226	13	14
C97	180	244,5	228,5	8	11,5	12	25	30	282 x 282	24	M33	375	270	17	14
C97	200	273	253	10	9	14,5	25	30	308 x 308	24	M33	412	296	18	24
C97	230	298,5	278,5	10	10	14,5	26	31	350 x 350	27	M36	464	340	20	29

Pressão estática máx. 45 bar

PINO de centralização (opcional) Ø20x20

m m

em uma peça com o peso da junta da haste - O peso da haste em duas peças é obtido somando-se o peso da haste

O peso do cilindro completo em duas peças é obtido somando-se o peso do cilindro em uma peça com o peso da junta da haste e o peso dos flanges.

ØC

e1

Р

H⊧

L = W + e1 + H_F

3.2 CILINDROS C97 - INDIRETO LATERAL (EM TALHA)

Estremita' End Drenaggio Drain Vite M Screw M Ghiera

Threaded

Manicotto Head

Sfiato Vent

0

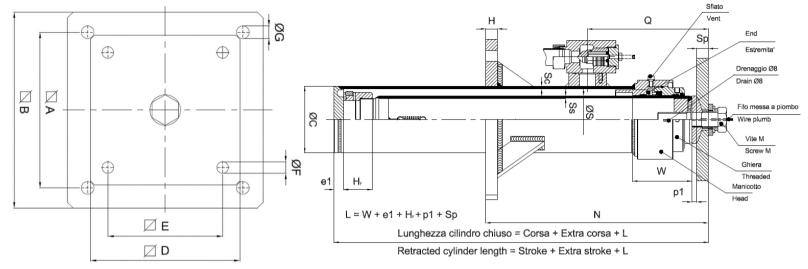
W

Batente superior amortecido

Lunghezza cilindro chiuso = Corsa + Extra corsa + L	
Retracted cylinder length = Stroke + Extra stroke + L	_

Sc

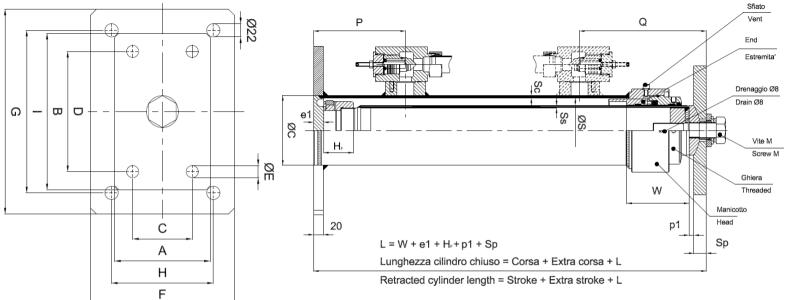
l SS


		STELO		CAM	CIA	TESTA	V	ALVOLA		FISSO	VITE		PE:	so		OLIO	I/m
	øs	S	is	ØС	Sc	Т	1	0	Р	L	М	x 1m d (kg,			sso g)	movimento x 1m	riempimento x 1m
C97	80	5 7,5	12	114,3	4	150	157	320	210	205	M18	21 25	31	25 41	44	5	3,8
C97	85		5 ,5	114,3	4	150	157	320	210	205	M30	2	-	4 4	3 5	5,6	3,2
C97	90	5 10	7,5 12	133	4,5	157	166	320	215	205	M30	25 34	30 37	29 31	30 32	6,4	5,7
C97	100	5 10	7,5 12	139,7	4,5	166	170	320	215	205	M30	27 37	32 41	30 32	31 33	7,8	5,6
C97	110	5 10	7,5 12	152,4	5	175	196	325	215	215	M30	32 43	38 48	37 39	31 40	9,5	6,4
C97	120	5 10	7,5 12,5	159	5	200	200	325	215	215	M30	35 46	40 52	42 47	45 48	11,3	6,1
C97	130	5 10	7,5 12	177,8	5,6	216	210	325	215	215	M30	39 53	46 59	53 56	55 57	13,3	8,5
C97	150	6 10	7,5	193,7	5,9	226	217	325	215	215	M30	49 62	54	57 60	58	17,7	8,3
C97	180	1	0	244,5	8	270	242	355	225	260	M60	8	9	9	7	25,4	15,6
C97	200	1	0	273	10	296	257	355	225	260	M60	11	12	10	06	31,4	18,9
C97	230	1	.5	298,5	10	340	270	355	225	260	M60	15	51	15	51	41,5	19,4

Batente superior amortecido

 ω

ω.

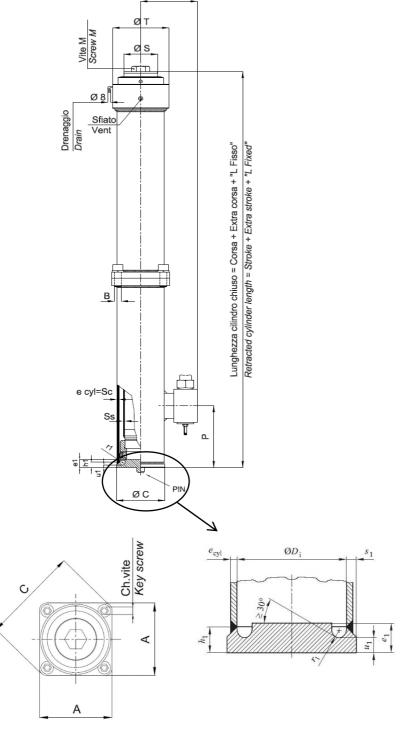

CILINDROS C97 - DIRETO CENTRAL

		STELO		CAN	1ICIA	PI/	ASTRA O	SCILLAN	ITE		F	IASTRA	DI BAS	E		FISSO	VITE		PE	SO		OLIC) I/m
	øs	S	is	ØС	Sc	D	E	Sp	F	А	В	Н	G	N	Q	L	М	x 1 m (kg/		fix (k		move ment x 1 m	filling x 1 m
C97	80	7	5 ,5	114,3	4	260	200	25	20	270	340	25	22	580	355	240	M30	2		6 6		5	3,8
C97	85	7	5 ,5	114,3	4	260	200	25	20	270	340	25	22	580	355	240	M30	2 2		4		5,6	3,2
C97	90	5 10	7,5 12	133	4,5	260	200	25	20	270	340	25	22	580	355	240	M30	25 34	30 37	65 67	66 68	6,4	5,7
C97	100	5 10	7,5 12	139,7	4,5	260	200	25	20	270	340	25	22	580	355	240	M30	27 37	32 41	66 68	67 69	7,8	5,6
C97	110	5 10	7,5 12	152,4	5	340	280	25	22	330	400	30	26	600	365	255	M30	32 43	38 48	98 100	99 101	9,5	6,4
C97	120	5 10	7,5 12,5	159	5	340	280	25	22	330	400	30	26	600	365	255	M30	35 46	40 52	103 108	106 109	11,3	6,1
C97	130	5 10	7,5 12	177,8	5,6	340	280	25	22	330	400	30	26	600	365	255	M30	39 53	46 59	114 117	116 118	13,3	8,5
C97	150	6 10	7,5	193,7	5,9	340	280	25	22	330	400	30	26	600	365	255	M30	49 62	54	118 121	119	17,7	8,3
C97	180	1	0	244,5	8	340	280	30	30	400	500	35	32	660	410	315	M60	8	9	20)4	25,4	15,6
C97	200	1	0	273	10	340	280	30	30	400	500	35	32	660	410	315	M60	11	12	21	13	31,4	18,9
C97	230	1	.5	298,5	10	340	80	30	30	400	500	35	32	660	410	315	M60	15	51	25	58	41,5	19,4

CILINDROS C97 - DIRETO LATERAL

Batente superior amortecido

	S	TELO		CAM	ICIA		PIA	STRA OS	CILLAN	TE		Р	IASTRA	DI BASI		VALV	OLA	FISSO	VITE		PE:	SO		OLIO	I/m
	øs	S	Ss	øс	Sc	А	В	С	D	Sp	ØE	F	G	Н	ı	Р	Q	٦	М	x 1 m d (kg,		fis (k		movimento x 1 m	riempimento x 1 m
C97	80		5 ,5	114,3	4	150	250	100	200	25	20	160	300	110	250	210	355	240	M30	2		4		5	3,8
C97	85		5 ,5	114,3	4	150	250	100	200	25	20	160	300	110	250	210	355	240	M30	2	-	4		5,6	3,2
C97	90	5 10	7,5 12	133	4,5	150	250	100	200	25	20	160	300	110	250	215	355	240	M30	25 34	30 37	44 46	45 47	6,4	5,7
C97	100	5 10	7,5 12	139,7	4,5	150	250	100	200	25	20	180	300	120	250	215	355	240	M30	27 37	32 41	45 47	46 48	7,8	5,6
C97	110	5 10	7,5 12	152,4	5	150	250	100	200	25	22	200	400	150	350	215	365	255	M30	32 43	38 48	59 61	60 62	9,5	6,4
C97	120	5 10	7,5 12,5	159	5	150	250	100	200	25	22	200	400	150	350	215	365	255	M30	35 46	40 52	64 69	67 70	11,3	6,1
C97	130	5 10	7,5 12	177,8	5,6	150	250	100	200	25	22	220	400	160	350	215	365	255	M30	39 53	46 59	75 78	77 79	13,3	8,5
C97	150	6 10	7,5	193,7	5,9	150	250	100	200	25	22	250	400	200	350	215	365	255	M30	49 62	54	79 82	80	17,7	8,3
C97	180	1	.0	244,5	8	300	400	250	350	30	30	280	450	230	400	225	410	315	M60	8	9	1!	52	25,4	15,6
C97	200	1	.0	273	10	300	400	250	350	30	30	310	450	260	400	225	410	315	M60	1:	12	10	51	31,4	18,9
C97	230	1	15	298,5	10	300	400	250	350	30	30	330	450	280	400	225	410	315	M60	15	51	20	06	41,5	19,4


3.5 CILINDRO SLIM CS – INDIRETO LATERAL (EM TALHA)

Os novos cilindros SLIM Ø80, Ø90, Ø100 e Ø110 são realizados de acordo com as normativas EN 81-2 e EN 81-20/50 com diâmetro compacto do cilindro com relação ao padrão (C97), apresentam um peso reduzido e permitem utilizar uma quantidade menor de óleo.

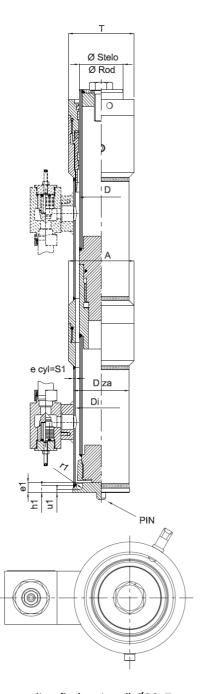
Disponível na versão em talha indireto lateral em uma ou duas peças.

Utilizado principalmente em equipamentos de dimensões reduzidas.

Não é possível fornecê-lo com limitadores de curso.

0110 I/m	riempimen x 1m	2,0	5,6	3,1	6′8
OFIC	movimento riempimen x 1m x 1m	5,0	6,4	7,8	9,5
	fisso (kg)	29	34	35	35
0,9	fisso (kg)	28	32 33	33 34	37 34
PESO	x 1m di corsa (kg/m)	35	56	32	45
	x 1m d (kg,	22 27	20 23	29 32	30 35
VITE	Σ	M18	M30	M30	M30
FISSO	ſ	205	205	205	215
4	۵	100	105	105	105
VALVOLA	0	395	390	390	400
>	_	150	156	163	170
TESTA	-	130	157 156 390 105 205	166	175
. IGIA	U	172	185	215	228
FLAN	В	M14	M16	M18	M20
GIUNTA FLANGIA TESTA	٨	10 16 130x130 M14 172 130 150 395 100 205	4,5 7 6 15 20 140x140 M16 185	4,5 7,5 6,5 15 20 163x163 M18 215 166 163 390 105 205	4,65 7,5 6,5 15 20 172x172 M20 228 175 170 400 105 215
	r1 u1 h1 e1	16	20	20	20
07	h1	10	15	15	15
FONDELLO	u1	2	9	9'2	6,5
5	건	5	7	2,5	7,5
	s1	3,6	4,5	4,5	4,65
CIA	Sc	3,6	4	4,5	4,5
CAMICIA	рф	12 101,6	114,3	127	12 139,7
	S	12	12	12	12
STELO	SS	5 7,5	5 7,5	5 7,5	5,7,5
	ØS	80	90	100	110
		CS	SO	SO	CS

nto


Pressão estática máx. 45 bar PINO de centralização (opcional) Ø20x20

mm

3.6 CILINDROS HC2

Novo cilindro HC com desempenho otimizado e dimensões reduzidas para acionamentos diretos e indiretos e para plataformas elevadoras.

	٥	D Dza Di S1 r1 u1 h1 e1	Di	S1	7	n1	h1	e1	Α	CH. PARAFUS	В	C	T	C T PESO DO mm mm FLANGE kg	C T PESO DO PESO DA JUNTA DA mm mm FLANGE kg HASTE kg (MÁX)
НС2	50	HC2 50 88,9 81,7 3,6 5 5 11 16	81,7	3,6	2	2	11	16	*	1	*		- 105	2	•
НС2	09	HC2 60 88,9 81,7 3,6 5 5 11 16	81,7	3,6	5	2	11	16	*	1	*	ı	- 105	2	3
НС2	70	HC2 70 88,9 81,7 3,6 5 5 11 16	81,7	3,6	2	2	11	16	*	ı	*	ı	- 105	2	3

* JUNTA DE UNIÃO

PINO de centralização (opcional) Ø20x7 mm

Pressão estática máx. até 70 bar em função da normativa adotada. Responde a: Diretiva Máquinas, Diretiva Elevadores, EN 81-2, EN 81-20/50.

- O peso da haste em duas peças é obtido somando-se o peso da haste em uma peça com o peso da junta da haste.
- O peso do cilindro completo em duas peças é obtido somando-se o peso do cilindro em uma peça com o peso da junta da haste e o peso dos flanges.

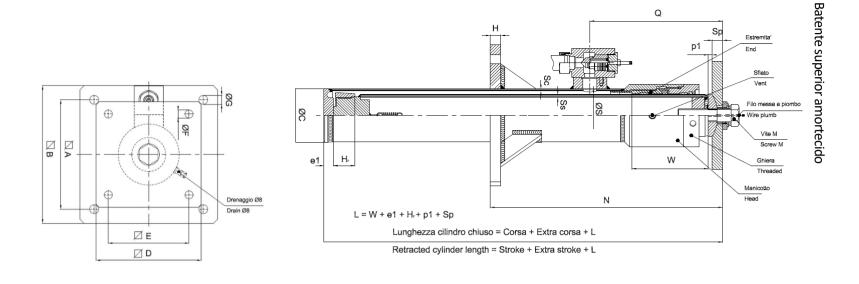
PINO de centralização (opcional) Ø20x7 mm

ØC

Drenaggio Ø8

Drain Ø 8

Batente superior amortecido Estremita' End Sfiato Vent Vite M Screw M Manicotto Head


3.7

CILINDROS HC2 – INDIRETO LATERAL (EM TALHA)

Р 0 e1 W H. L = W + e1 + H_F Lunghezza cilindro chiuso = Corsa + Extra corsa + L

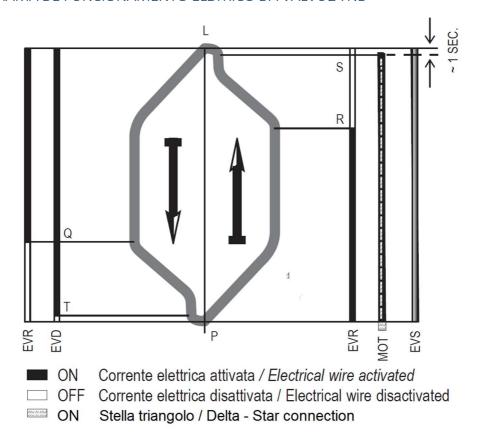
Retracted cylinder length = Stroke + Extra stroke + L

	H	ASTE	CAN	ЛISA	CABEÇ A	\	/ÁLVUL/	4	FIXO	PARAF USO	PES	0	ÓLEC	O I/m
	øs	Ss	ØС	Sc	Т	I	0	Р	L	М	x 1 m curso (kg/m)	Fixo (kg)	movimento x 1 m	enchimento x 1 m
HC2	50	5	88,9	3,6	105	93	343	211	179	M18	13	13	2	3,1
HC2	60	5 FULL	88,9	3,6	105	93	343	211	179	M18	14 30	13 13	3	2,4
HC2	70	5 7,5 12	88,9	3,6	105	93	343	211	179	M18	16 19 25	13 13 15	3,8	1,4

		HA	STE	CAN	ΛISA	СНА	PA O	SCILA	NTE		CHAF	PA DE	SUP	ORTE		FIXO	PARA FUSO	PES	0	ÓLE	O I/m
		ØS	Ss	С	Sc	D	E	Sp	F	Α	В	I	G	N	ď	L	М	x 1 m curso (kg/m)	Fixo (kg)	movimento x 1 m	enchimento x1m
Н	C2	50	5	88,9	3,6	160	120	15	18	220	270	20	20	580	340	199	M20	16	36	2	3,1
Н	C2	60	5 FULL	88,9	3,6	260	200	25	20	220	270	20	20	580	340	214	M30	14,3 30	36 36	3	2,4
Н	C2	70	5 7,5 12	88,9	3,6	260	200	25	20	220	270	20	20	580	340	214	M30	16 19 23	36 36 36	3,8	1,4

Batente superior amortecido

9


CILINDROS HC2 – DIRETO LATERAL

Р Q Estremita' B 0 e1_ Drenaggio Ø8 Drain Ø8 W Ghiera C Threaded Α p1 Н 20 Sp F L = W + e1 + H, + p1 + Sp Lunghezza cilindro chiuso = Corsa + Extra corsa + L Retracted cylinder length = Stroke + Extra stroke + L

	НА	STE	CAN	⁄IISA		СНА	PA OS	SCILAN	TE			CHAF SUP(۷ÁL۱	/ULA	LIVO	PARA FUSO	PES)	ÓLE	O I/m
	øs	Ss	ØС	Sc	Α	В	С	D	Sp	ØE	F	G	Н	1	Р	Q	L	М	x 1 m de curso (kg/m)	Fixo (kg)	movimento x 1 m	enchimento x1m
HC2	50	5	88,9	3,6	150	250	100	200	15	18	130	300	80	250	211	363	199	M20	13	26	2	3,1
HC2	60	5 FULL	88,9	3,6	150	250	100	200	25	20	130	300	80	250	211	378	214	M30	14 30	26 26	3	2,4
HC2	70	5 7,5 12	88,9	3,6	150	250	100	200	25	20	130	300	80	250	211	378	214	M30	16 19 25	26 26 26	3,8	1,4

3.10 DIAGRAMA DE FUNCIONAMENTO ELÉTRICO DA VÁLVULA NL

Tensões disponíveis para as bobinas: 12-24-48-60-80-110-180-220 V.c.c.

Emergência: 12 Vcc.

Potência das bobinas: EVS: 36 W

EVD: 36 W + 45 W

EVR: 36 W

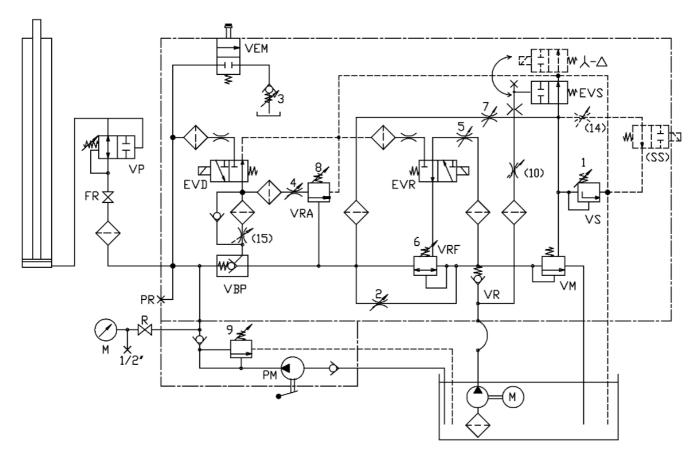
P – SUBIDA: Alimentar o motor e a bobina "EVR"

Alimentar a bobina "EVS" para o arranque $\lambda - \Delta$ ou soft-starter

R – DESACELERAÇÃO EM SUBIDA: Desexcitar "EVR"

S – PARADA EM SUBIDA: Parada do motor (desexcitar "EVS", se presente, com atraso de cerca de 1"

após o motor)


L – DESCIDA Alimentar as bobinas "EVD" e "EVR"

Q – DESACELERAÇÃO EM DESCIDA: Desexcitar "EVR"

T – PARADA EM DESCIDA Desexcitar "EVD"

3.11 ESQUEMA OLEODINÂMICO DA VÁLVULA TIPO "NL"

LEGENDA

VR = Válvula de retenção.

VM = Válvula de máxima pressão.

VS = Válvula de segurança.

VRF = Válvula de regulagem de fluxo.

VRA = Válvula de balanceamento de descida.

VBP = Válvula de bloqueio pilotada. EVD = Eletroválvula de descida.

EVR = Eletroválvula do regulador de fluxo.

EVS = Válvula de subida. VEM = Emergência manual.

VP = Válvula de bloqueio (paraquedas).

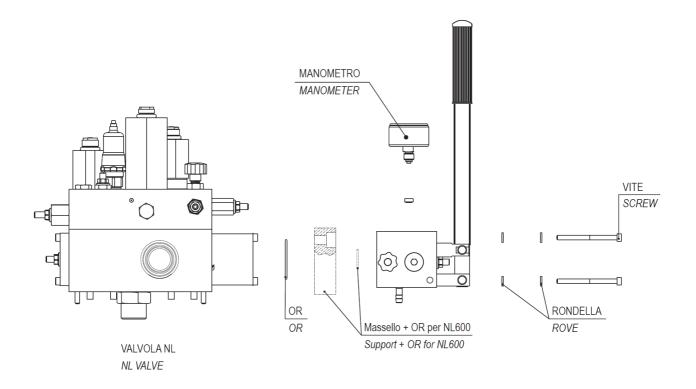
FR = Filtro de torneira.

R = Torneira e engate 1/2" Gas para manômetro de controle.

M = Manômetro.

PM = Bomba de mão.

PR = Engate do pressostato


(SS) = Soft Stop (opcional)

1, 2,..., (14)... = Número do parafuso de regulagem (opcional)

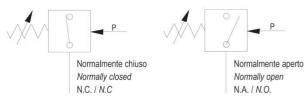
4 ACESSÓRIOS

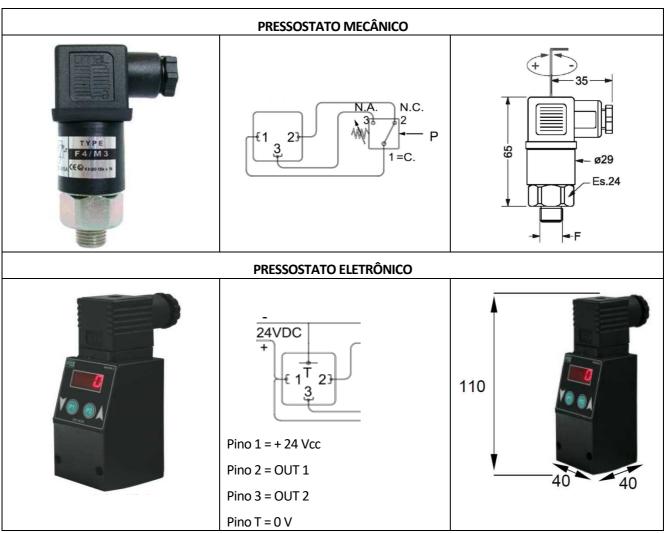
4.1 BOMBA DE MÃO PM – 6

Nas válvulas NL 210 e NL 380, a bomba de mão é fixada diretamente no corpo da válvula, com quatro parafusos M6 ou M8, respectivamente.

As arruelas servem como espaçadores somente na válvula NL 210. O manômetro com sua torneira devem ser retirados do flange de fechamento e montados na bomba de mão conforme mostrado na figura acima, a menos que a bomba já não disponha de uma.

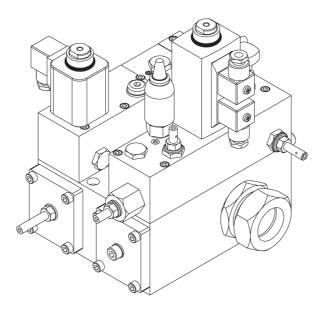
Nas válvulas NL 600, a bomba de mão é fixada com quatro parafusos M8 no flange de adaptação.

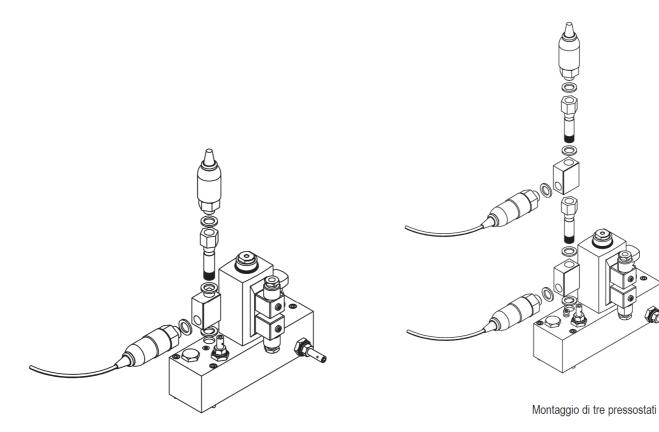

O flange de adaptação é fixado diretamente no corpo da válvula com quatro parafusos M10 x 30.


O flange de adaptação também é um flange de fechamento, caso a válvula NL 600 não tenha a bomba de mão. Para as versões especiais, entre em contato com o Departamento Comercial da OMARLIFT.

4.2 PRESSOSTATOS

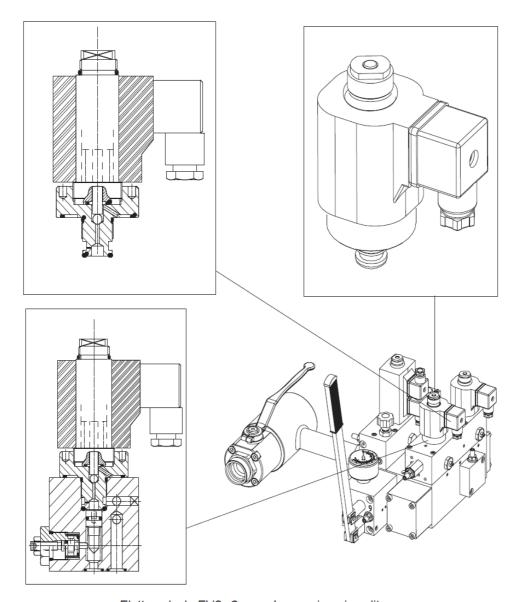
4.2.1 PRESSOSTATO DE SOBRECARGA




CARACTERÍSTICAS	PRESSOSTATO MECÂNICO	PRESSOSTATO ELETRÔNICO
MODELO	F4V / M3	FL54B M3
Campo de pressão Precisão da intervenção Histerese Corrente alternada Corrente contínua Temperatura Grau de proteção	10 ÷ 100 bar ± 4% F.S. 10% F.S. 250 Vca / 0,5 A 110 Vcc / 0,15 A -25 ÷ 85 °C IP65	0 ÷ 100 bar ± 1% F.S. CONFIGURÁVEL 42 Vca / 2 A 12 – 24 Vcc /0,5 A -20 ÷ 80 °C IP65

4.2.2 MONTAGEM DO(S) PRESSOSTATO(S)

Montaggio di un solo pressostato


Montaggio di due pressostati

4.3 DISPOSITIVOS DE REGULAGEM DO CURSO

4.3.1 DISPOSITIVO ELÉTRICO (EVS) DE RETARDO DA PARTIDA EM SUBIDA COM ARRANQUE λ – Δ OU SOFT STARTER

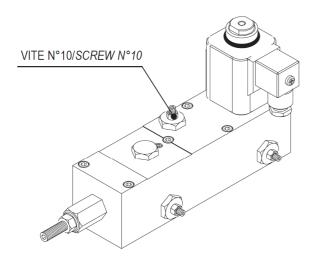
Para otimizar a partida em subida, em caso de equipamento com comutação estrela-triângulo da conexão do motor ou com arranque gerenciado por soft-starter, é possível instalar um dispositivo elétrico que permite a gestão pontual do retardo da pressurização do equipamento, sincronizando-o ao fim real da fase de arranque do motor. O sistema é realizado utilizando-se um piloto e uma bobina EVS opcionais

Elettrovalvola EVS: Comando pressione in salita

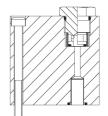
- Com a bobina EVS desexcitada, a pressão na válvula é quase zero, e o óleo volta ao reservatório.
- Com a bobina EVS eletricamente excitada, a pressão na válvula sobe até a pressão dinâmica de subida e se mantém até que a corrente seja cortada.
- A eletroválvula EVS é utilizada nos equipamentos com motores de grande potência para retardar a pressurização e permite que o motor arranque sem uma forte absorção de corrente.

4.3.2 DISPOSITIVO HIDRÁULICO (PARAFUSO № 10) DE RETARDO DA PARTIDA EM SUBIDA POR SOFT-STARTER

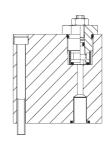
Como alternativa à solução elétrica (EVS), para otimizar o funcionamento do soft-starter, está disponível sob encomenda um dispositivo hidráulico que retarda a partida em subida.


Este retardo, regulável, permite que qualquer tipo de soft-starter arranque o motor de modo suave e com a mínima absorção de corrente $(1,2 \div 1,6)$ vezes a corrente nominal), sem exigir a terceira bobina no bloco de válvulas.

Como, durante o tempo de arranque, o motor não pode fornecer energia, é necessário que a partida em subida ocorra somente quando o motor está em regime.

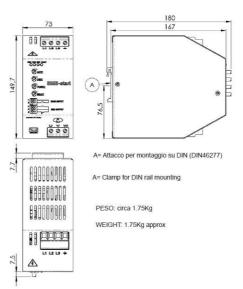

O retardo da partida em subida ocorre por meio do estrangulador regulável do parafuso n° 10. Apertando-se o parafuso n° 10, alonga-se este tempo. A configuração especial do estrangulador permite obter um retardo quase constante com a variação da temperatura do óleo e permite sua aplicação inclusive em válvulas padrão. O parafuso nº 10 deve ser regulado de modo que a cabine só comece seu movimento para cima quando o motor tiver alcançado sua velocidade de regime.

Veja na tabela a seguir uma rápida comparação da solução hidráulica com relação à elétrica:


PRÓ (+)	CONTRA (-)
Não usa nenhuma bobina, portanto, não são necessárias conexões elétricas, assim, exige menos custos	Menor precisão na regulagem, tempos de arranque da cabine ligeiramente mais longos
O elevador parte com retardo reduzido, assim que o motor alcança sua velocidade de regime.	Menor repetitividade nos tempos de atuação entre o óleo frio e o óleo quente

Versione standard / Standard version

Versione con dispositivo di ritardo partenza regolabile



4.3.3 DISPOSITIVO SOFT-STARTER

O dispositivo soft-starter foi projetado para fornecer um arranque progressivo para motores trifásicos de indução e, assim, reduzir os valores da corrente e do torque de arranque. O dispositivo deve ser instalado no quadro elétrico e deve, portanto, atender a todos os requisitos típicos dessas instalações (locais sem pó e não expostos a gases corrosivos e raios solares ou à umidade). O desempenho se refere a uma altitude não superior a 1000 m acima do nível do mar, com temperatura ambiente de 0-40 °C.

- Máxima flexibilidade para ser montado com facilidade em qualquer equipamento.
- Possibilidade de configurar o tempo de aceleração, o torque de partida e o limite de corrente.
- Em combinação com o dispositivo parafuso nº 10 ou com o dispositivo EVS (conforme os itens correspondentes), melhora o conforto de funcionamento.
- Reduz as exigências mecânicas e, portanto, o desgaste do equipamento.
- Função diagnóstica de eventuais avarias por meio da combinação de LEDs.

ESPECIFICAÇÕES TÉCNICAS

	MODELO						
	SSV040	SSV070					
Alimentação	230 V ou 400 V	400 V					
Corrente nominal	40 A	70 A					
Máx. corrente de arranque	120 A	180 A					
Aceleração	1 – 7 seg	1 – 7 seg					
Arranques / hora	15 - 75	15 - 75					
Corrente arr. típica	1,4 ÷ 1,7 ln	1,4 ÷ 1,7 In					
Proteção	-	-					
Peso	1,75 Kg	1,75 Kg					

4.3.4 DISPOSITIVO SOFT-STOP

O conforto é sempre um requisito fundamental para qualquer aplicação em elevadores. Para garantir uma parada no andar extremamente suave e confortável, inclusive durante um curso em subida, a válvula NL OMARLIFT pode ser equipada, sob encomenda, com um dispositivo Soft-Stop que permite gerenciar a fase final da parada no andar, sem alterar as outras funcionalidades.

O dispositivo Soft-Stop é composto essencialmente por um piloto de subida específico em alumínio, um circuito hidráulico específico, uma bobina e um parafuso de regulagem.

Piloto SOFT-STOP

A posição do parafuso de regulagem permite definir o comportamento da válvula na fase final da parada no andar, adequando-o às exigências de conforto.

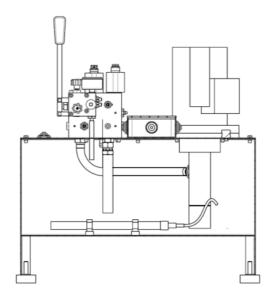
Para o funcionamento, é necessário também o prolongamento da fase de rotação do motor por cerca de 1 s, após a chegada ao sensor de andar, por meio de um retardo correspondente no quadro elétrico de comando.

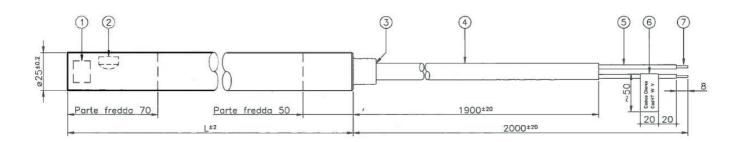
O dispositivo é realizado em configuração NA normalmente aberta, portanto, se a bobina não for excitada, o elevador não consegue partir. Se a regulagem estiver correta, quando a cabine se move em baixa velocidade, com a desexcitação da bobina, a cabine deve parar suavemente em um espaço de cerca de 10 mm.

O dispositivo de regulagem permanece compatível com as outras funcionalidades da válvula, por exemplo, os opcionais para o SOFT-STARTER, como o EVS, o parafuso 10 e com as outras regulagens, e é independente delas.

O piloto também pode ser instalado em válvulas NL existentes para introduzir a funcionalidade SOFT-STOP e, obviamente, exige ainda uma alteração no quadro, para pilotar a bobina específica.

Válvula NL com piloto SOFT-STOP instalado




4.4 ACESSÓRIOS PARA AQUECIMENTO

4.4.1 RESISTÊNCIA DE AQUECIMENTO DO ÓLEO: CARACTERÍSTICAS, APLICAÇÕES E MONTAGEM

A resistência fornecida pela OMARLIFT é de tipo tubular com regulagem automática por termostato, graças a um termostato de trabalho e um de emergência, que garante o desligamento em caso de danos do termostato principal. A resistência é fixada no fundo do reservatório por meio de dois suportes com ímã montados por encaixe.

Uma vez eletricamente conectada, a resistência só funciona quando a temperatura do óleo cai abaixo do nível de calibragem do termostato.

CÓDIGO HT	CÓDIGO DO CLIENTE	POTÊNCIA	TENSÃO	COMPRIMENTO	COR DOS CABOS	
LT71732	CA106260	500 W	230 V	430 mm	Vermelho	
LT71733	CA106261	500 W	400 V	430 mm	Azul	
LT71734	CA106262	300 W	230 V	330 mm	Vermelho	
LT71735	CA106263	300 W	400 V	330 mm	Azul	

Os limites de funcionamento são: T_{ON} =20 \pm 4 °C, T_{OFF} =30 \pm 3 °C

As resistências não podem ser testadas no ar, pois podem não se acender e/ou queimar. Para o teste, é necessário seguir um procedimento específico. Entre em contato com o Serviço de Assistência OMARLIFT.

4.4.2 RESISTÊNCIA DE AQUECIMENTO DO BLOCO DE VÁLVULAS NL

A resistência para o aquecimento do bloco de válvulas é utilizada com bons resultados em equipamentos de pequenas dimensões, de curso curto e com temperaturas na sala de máquinas não abaixo de 10/12 °C. Temperaturas baixas demais na sala de máquinas e grandes quantidades de óleo esfriam rapidamente o grupo de válvulas, tornando a função de aquecimento da resistência pouco eficiente. Nestes casos, a resistência de aquecimento da válvula pode ser usada em combinação com a resistência de aquecimento do óleo.

A aplicação da resistência à válvula "NL" consiste na inserção da resistência no furo "A" do bloco de válvulas com o cabo de conexão voltado para o interior do reservatório, conforme mostrado em Fig. 1.

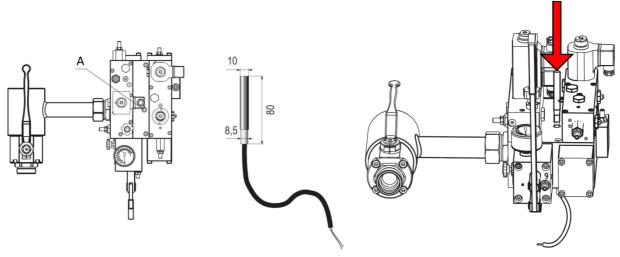


Fig. 1 - Aplicação da resistência de 60 W na válvula "NL"

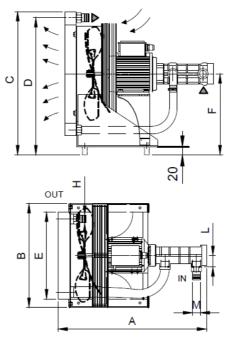
CARACTERÍSTICAS ELÉTRICAS					
Potência	60 W				
Tensão	230 – 400 V				
Frequência	50 – 60 Hz				

Aplicação:

- Solte a tampa "A" Fig. 1.
- Insira a resistência conforme indicado pela seta.
- Feche a tampa "A".
- Conecte os fios da resistência no bloco de terminais da unidade de controle.
- Alimente a resistência com a tensão correta.

4.5 RESFRIAMENTO DO ÓLEO

Em caso de equipamentos com alto tráfico ou com condições difíceis de funcionamento, pode ser necessário prever um sistema de resfriamento do óleo para melhorar o desempenho e a duração do equipamento.


4.5.1 RESFRIAMENTO POR AR

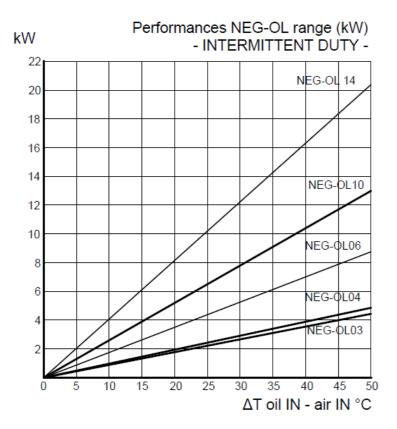
4.5.1.1 CARACTERÍSTICAS

O sistema de resfriamento por ar é composto pelos seguintes elementos principais:

- Permutador de calor óleo-ar com ventilador.
- Motor elétrico para acionamento da bomba para a circulação forçada do óleo e do ventilador.
- Termostato para a regulagem da temperatura máxima desejada do óleo (o termostato deve estar localizado no reservatório e calibrado a cerca de 40/50 °C).
- Válvula de fundo posicionada no tubo de aspiração dentro do reservatório, para evitar que o tubo esvazie.
- Tubos de conexão com a unidade de controle.
- Quadro elétrico para o comando do motor da bomba elétrica e do ventilador.

ATENÇÃO: o quadro de comando não é fornecido com o sistema de resfriamento, mas deve ser preparado pelo cliente ou expressamente solicitado na fase da encomenda.

Tabella dimensionale (mm)


Tipo / Type	Α	В	С	D	E	F	Н	L	M
NEG#06	578	409	538	515	335	303	1" GAS	44	1" GAS
NEG#10	578	409	538	515	335	303	1" GAS	44	1" GAS
NEG#14	637	528	710	640	457	343	1" GAS (**)	44	11/4" GAS (*)

^{(*) 1&}quot;1/4 GAS è l'aspirazione della pompa. Sull'aspirazione della pompa è montato un raccordo portagomma 1"1/4 lato pompa, lato connessione tubo è di Ø30 mm.

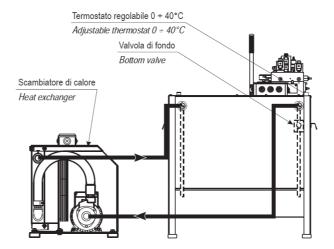
^{(**) 1&}quot; GAS è l'attacco sulla massa radiante. Quando il raccordo portagomma è montato l'attacco tubo è Ø30 mm.

O funcionamento do sistema de resfriamento a ar é: quando a temperatura do óleo sobe e alcança o valor de calibragem do termostato, o termostato fecha o contato. Um contator colocará, então, a bomba de circulação forçada do óleo e o ventilador em movimento. A temperatura do óleo cairá abaixo da calibragem do termostato, e o sistema de resfriamento será parado.

TIPO	NEG #06	NEG #10	NEG #14
POTÊNCIA MÁX DISSIPADA	6,98 kW	10,5 kW	16,28 kW
QUANTIDADE MÁX DE CALOR DISPERSO	6000 Kcal/h	9000 kcal/h	14000 kcal/h
POTÊNCIA DO MOTOR	0,40 kW	0,40 kW	0,55 kW
FLUXO DE AR	1300 m³/h	1300 m ³ /h	2500 m ³ /h
NÍVEL DE RUÍDO	68 dB (A)	68 dB (A)	71 dB (A)
PESO LÍQUIDO	35kg	35kg	55kg

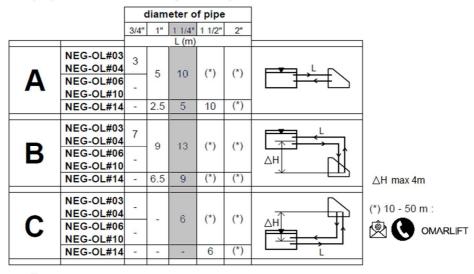
TENSÕES
DISPONÍVEIS
230/400 V
230/400 V
50/60 Hz
·

4.5.1.2 ESQUEMA DE CONEXÃO DO RESFRIAMENTO POR AR 7 kW - 10,5 kW - 16,4 kW


Se o sistema de resfriamento for encomendado junto da unidade de controle, os engates para a aspiração e o retorno do óleo na unidade de controle já são preparados em fábrica. A conexão dos tubos será feita pelo Cliente, simplesmente conectando-se a entrada do óleo da bomba elétrica no engate do reservatório que leva à válvula de fundo, e a saída do permutador no outro engate também localizado no reservatório.

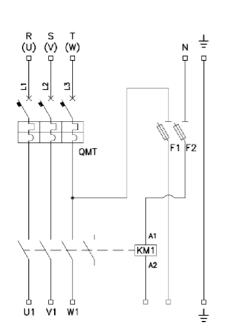
Na conexão dos tubos para o permutador de calor, respeite o sentido de circulação do óleo.

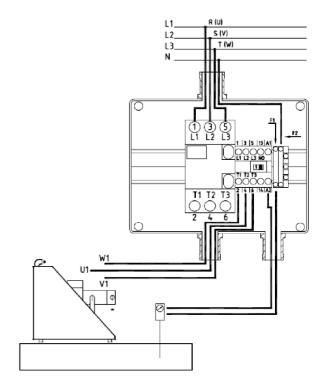
O kit de resfriamento inclui:


- Tubo em borracha para a conexão IN / OUT diâmetro 1"1/4 comprimento 3+3 metros.
- Válvula de fundo
- Termostato.
- Porta-borracha.
- Abraçadeiras.

Modello corpo unico
Type with complete device

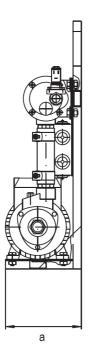
4.5.1.3 COMPRIMENTO E DIÂMETRO DOS TUBOS

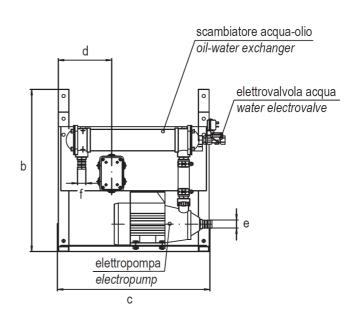

Lunghezze (m) e diametri tubi (inches)



4.5.1.4 ESQUEMA ELÉTRICO DO RESFRIAMENTO POR AR 7 kW – 10,5 kW – 16,4 kW

STANDARD : EN 64 - 08 (NORMATIVA BASSA TENSIONE 7323) ; SPECIAL : EN 60 204 - 1

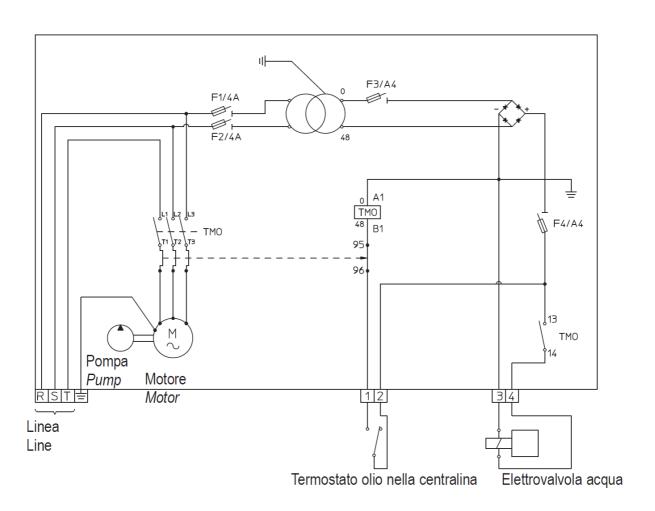

4.5.2 **RESFRIAMENTO POR ÁGUA**


4.5.2.1 CARACTERÍSTICAS 10,5 kW – 21 Kw

No resfriamento por água, o termostato de controle da temperatura do óleo comanda tanto a bomba elétrica para a circulação do óleo quanto a eletroválvula de abertura e fechamento da água corrente. Deste modo, o consumo da água se limita apenas ao período de funcionamento do resfriamento. O sistema de resfriamento por água é composto pelos seguintes elementos principais:

- Permutador de calor óleo-água.
- Bomba elétrica com motor trifásico de cerca de 1,5 kW para a circulação forçada do óleo.
- Termostato para a regulagem da temperatura máxima desejada do óleo (o termostato deve estar localizado no reservatório e calibrado a cerca de 40/50 °C).
- Eletroválvula de água com bobina de 48 Vcc 8 W, para a abertura e o fechamento da linha de água.
- Quadro elétrico para o comando do motor da bomba elétrica e da eletroválvula de água.

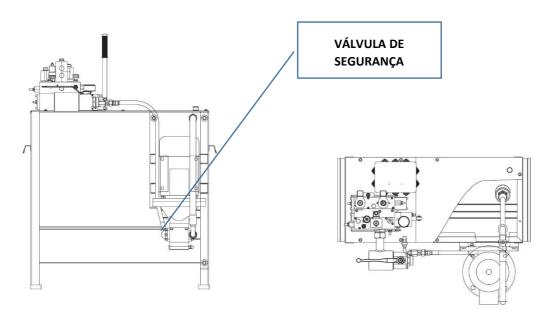
ATENÇÃO: o quadro de comando não é fornecido com o sistema de resfriamento, mas deve ser preparado pelo cliente ou expressamente solicitado na fase da encomenda.



POTÊNCIA DE RESFRIAMENTO	DISPERSÃO DE CALOR	а	b	С	d	е	f	CONEXÃO DA ELETROVÁLVULA
10,5 kW	9000 kcal/h	185	608	571	200	Ø 30	Ø 30	G1/2
21 kW	18000 kcal/h	215	673	716	160	Ø 40	Ø 40	G3/4

TIPO	10,5	21	TENSÕES DISPONÍVEIS	
POTÊNCIA MÁX DISSIPADA	10,5 kW	21 kW		
QUANTIDADE MÁX DE CALOR DISPERSO	9000 kcal/h	18000 kcal/h	230/400 V	
POTÊNCIA DO MOTOR DE CIRCULAÇÃO DO ÓLEO	1,1 kW	1,5 kW	50/60 Hz	
CONSUMO MÉDIO DE ÁGUA POR HORA	0,5 m ^{3/} h	1 m³/h	240/415 V	
PRESSÃO DA ÁGUA	2-7 bar	2-7 bar	50 Hz	
DIMENSÕES	571 x 185 x 608 mm	716 x 215 x 673 mm	208/360 V	
PESO LÍQUIDO	32 kg	64 kg	- 60 Hz	

4.5.2.2 ESQUEMA ELÉTRICO DO RESFRIAMENTO POR ÁGUA 10,5 kW 10,5 kW - 21 kW



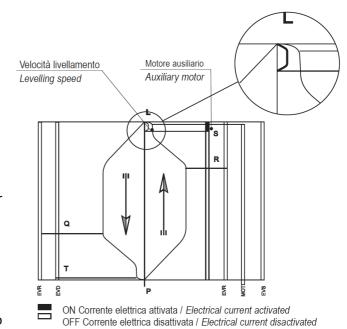
4.6 MICRONIVELAMENTO

4.6.1 CARACTERÍSTICAS TÉCNICAS

O sistema de micronivelamento é utilizado em equipamentos de grande vazão e tráfico intenso. O objetivo deste dispositivo é recolocar a cabine no andar, evitando o arranque do motor principal por poucos centímetros.

Microlivellamento con gruppo motore-pompa ausiliario

Vazão da bomba de engrenagens: 20 l/min (50 Hz).


Potência do motor elétrico: 3HP - 2,2 KW - 1450 g/min - 50 Hz.

Velocidade de nivelamento das hastes: ver tabela.

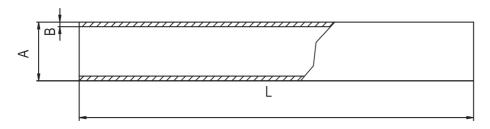
DIÂMETRO DA HASTE	110	120	130	150	180	200	230	
VELOCIDADE DA HASTE m/s	50 Hz	0,033	0,028	0,024	0,018	0,012	0,010	0,008
	60 Hz	0,040	0,034	0,029	0,022	0,014	0,012	0,010

4.6.2 ESQUEMA DE VELOCIDADE DA CABINE DURANTE O MICRONIVELAMENTO

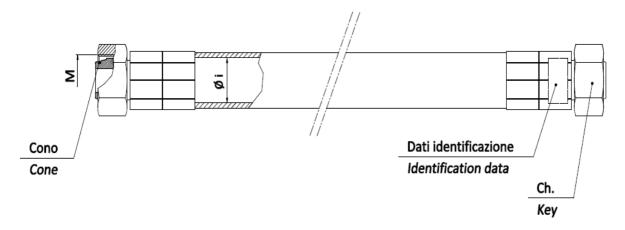
- Durante a fase de subida, o grupo motor-bomba auxiliar é alimentado.

- Na fase de parada, durante a subida, ocorre a parada do motor auxiliar.

COMANDO ELÉTRICO


O comando do micronivelamento deve ser realizado por meio de um contato localizado no vão, alguns centímetros abaixo do nível do plano e acionado pela cabine quando ela se abaixa devido à carga. O contato no vão, acionado pela cabine, deve comandar eletricamente um contator, que alimenta o motor trifásico do micronivelamento. A ação deve ser interrompida quando a cabine tiver alcançado o nível do andar.

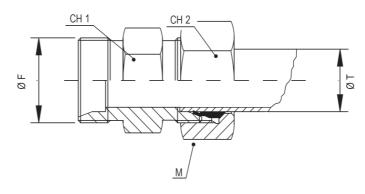
O quadro de comando elétrico não é fornecido com o micronivelamento.


4.7 TUBOS DE CONEXÃO

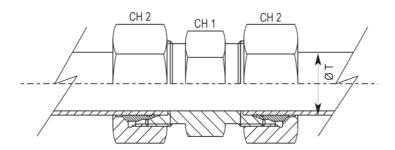
4.7.1 TUBO EM AÇO St 37.4

TIPO	A [mm]	B [mm]	L [m]	CONEXÕES	FLUXO DE ÓLEO	PRESSÃO MÁX.
6 x 1	6	1	5÷6	1/8 "	somente conexão VP	45 bar
22 x 1,5	22	1,5	5÷6	3/4 "	8 ÷ 42 l/min	45 bar
35 x 2,5	35	2,5	5÷6	1 1/4"	55 ÷ 150 l/min	45 bar
42 x 3	42	3	5÷6	1 1/2"	180 ÷ 300 l/min	45 bar
N° 2:42 x 3	42	3	5÷6	1 1/2"	360 ÷ 600 l/min	45 bar

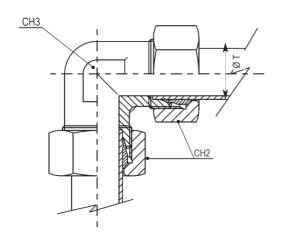
4.7.2 TUBO FLEXÍVEL



TIPO	Øi [mm]	CONE	M	CH [mm]	APLICAÇÕES	PRESS MÁX.	RAIO DE CURVATURA [mm]	OBS.
G1/4	6	24°	M12 x 1,5	14	somente conexão VP	45 bar	100	Desenho não representativo. conexões 2xG1/8
G3/4	19	24°	M30 x 2	32	8 ÷ 42 l/min	45 bar	240	-
G1 1/4	31,8	24°	M45 x 2	50	55 ÷ 150 l/min	45 bar	420	-
G1 1/2	38,1	24°	M52 x 2	60	180 ÷ 300 l/min	45 bar	500	-
G2	50,8	60°	2"	70	360 ÷ 600 l/min	45 bar	660	-

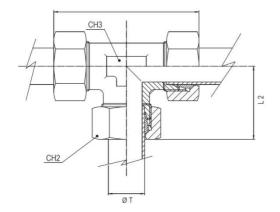

4.8 CONEXÕES

4.8.1 CONEXÃO DO TERMINAL RETO

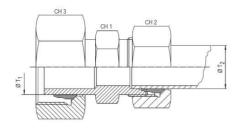


ØF	ØT [mm]	CH1 [mm]	CH2 [mm]	М	APLICAÇÕES
G1/8	6	14	14	M12 x 1,5	Conexão das válvulas de bloqueio para equipamentos com dois cilindros
G3/4	22	32	36	M30 x 2	Válvulas NL 8 ÷ 42 l/min – FR 3/4" – VP HC 34
G1 1/4	35	50	50	M45 x 2	Válvulas NL 55 ÷ 150 l/min – FR 1 1/4" – VP 114
G1 1/2	42	55	60	M52 x 2	Válvulas NL 180 ÷ 300 l/min – FR1 1/2" – VP 112

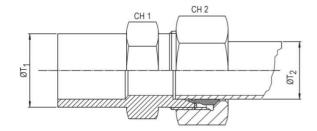
4.8.2 CONEXÃO DE JUNÇÃO RETA


4.8.3 CONEXÃO DE JUNÇÃO EM COTOVELO

ØT [mm]	CH1 [mm]	CH2 [mm]	CH3 [mm]	APLICAÇÕES	PRESS. MÁX. [bar]
6	12	14	-	Conexão VP	45
22	32	36	27	8 ÷ 42 l/min	45
35	46	50	41	55 ÷ 150 l/min	45
42	55	60	50	180 ÷ 300 l/min	45

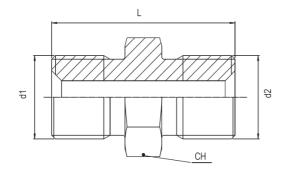


4.8.4 CONEXÃO DE TRÊS VIAS



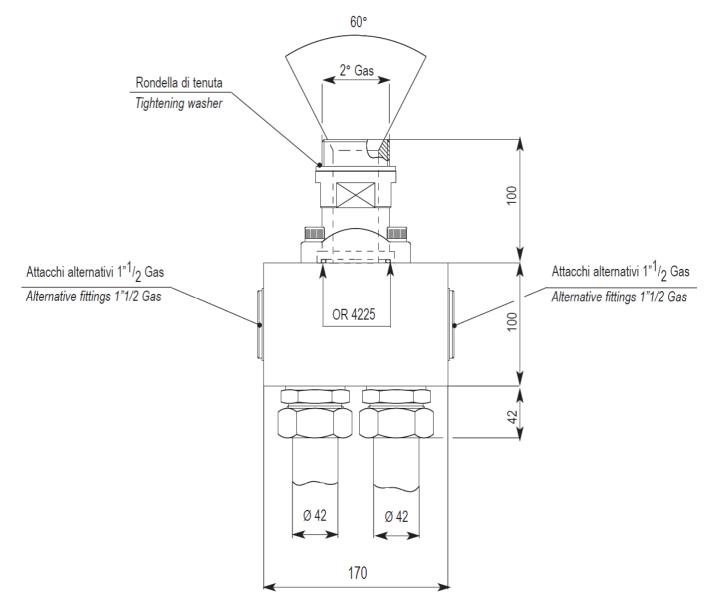
ØT [mm]	L1 [mm]	L2 [mm]	CH2 [mm]	CH3 [mm]
22	88	44	36	27
35	112	56	50	41
42	126	63	60	50

4.8.5 CONEXÃO DE REDUÇÃO DE LINHA COMPLETA


4.8.6 CONEXÃO DE REDUÇÃO DE LINHA EM ESPIGA

ØT1	ØT2	CH1	CH2	CH3
[mm]	[mm]	[mm]	[mm]	[mm]
35	22	36	36	50
42	35	46	50	60

4.8.7 CONEXÃO MACHO-MACHO (UNIÃO ROSQUEADA)


A conexão macho-macho de 2" é utilizada para a conexão unidade de controle-cilindro com um tubo flexível de 2".

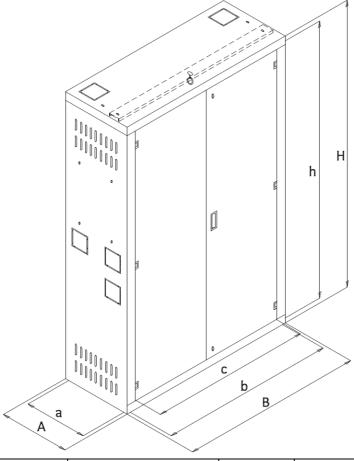
d1 = d2	CHANFR O	CH [mm]	APLICAÇÕES
G3/4	60°	32	Válvulas VP HC-34
G2	60°	65	Válvulas VP 200 - FR 2"

4.8.8 CONEXÃO ESPECIAL DE TRÊS VIAS: 2" + Ø42 + Ø42

APLICAÇÃO

- Conexão de unidades de controle com válvulas de 2" em dois cilindros em combinação.
- Conexão de unidades de controle com válvulas de 2" em um cilindro usando duas linhas paralelas.

4.9 ARMÁRIOS MRL


4.9.1 GAMA E DIMENSÕES

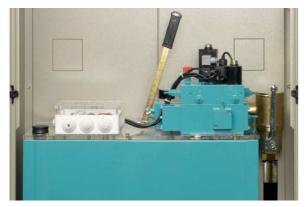
A OMARLIFT oferece aos seus clientes uma ampla gama de armários para equipamentos sem sala de máquinas. São fornecidos com duas portas com fechadura, em chapa pintada RAL 7032, com olhal para a movimentação de cargas, luz interna, parafusos, embalagem padrão, instruções de montagem e análise de riscos.

Os armários foram projetados levando-se em conta todas as várias combinações de saída do tubo, para atender às exigências do Cliente.

Para solicitações como prazos de entrega e armários especiais, entre em contato com o Departamento Comercial da OMARLIFT.

Os armários estão em conformidade com os requisitos da normativa sobre elevadores em vigor, se for respeitada a instalação dos dispositivos elétricos aos cuidados do instalador.

CÓDIGO	DIMENSÕES EXTERNAS (mm)			DIMENSÕES INTERNAS (mm)		ACESSO (mm)	GAMA			
	Α	В	Н	a	b	h	С	RESERVATÓ RIO	MOTOR MÁX	BOMBA MÁX
8H202430	400	900	2100	350	890	2060	840	110/S – 135/S	20 HP	150 l/min
8H202431	580	1120	2100	530	1110	2060	1060	210/S 320/S	25 HP 50 HP	210 l/min 380 l/min
8H202438	1250	1900	2200	1200	1890	2160	1820	680	80 HP	600 l/min


4.9.2 CONFIGURAÇÕES DO ARMÁRIO E SAÍDAS DO TUBO FLEXÍVEL

Os armários OMARLIFT são configurados com numerosas aberturas personalizáveis. Veja a seguir algumas disposições indicativas de layout levando-se em conta a configuração do equipamento escolhida.

UNIDADE DE CONTROLE SEM HDU

UNIDADE DE CONTROLE COM HDU INTEGRADA

4.10 GUIAS PARA ELEVADORES

TIPO DE GUIA	a [mm]	b [mm]	c [mm]
GL445	45	45	5
GL505	50	50	5
GF765	70	65	9
GL708	70	70	8
GF770	70	70	9
GF762	75	62	10
GL809	80	80	9
GF829	82	68	9
GF890	89	62	16
GF975	90	75	16
GF125	125	82	16
GM890	89	62	16
GM975	90	75	16
GM125	125	82	16
GM127 – 2	127	89	16
GM127 - 3	127	89	16

4.11 EMBALAGEM

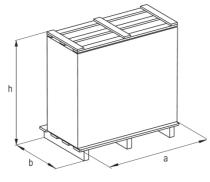
4.11.1 EMBALAGEM PARA CILINDROS

Os cilindros OMARLIFT são fornecidos com embalagem padrão, constituída por óleo de proteção, saco em PVC microperfurado na cabeça do cilindro e cobertura do flange de engate da válvula paraquedas, que é fornecida à parte na caixa de acessórios (a ser montada pelo Cliente). A pedido específico do Cliente, é possível utilizar embalagens opcionais, como suportes em madeira (disponíveis também em metal ou madeira tratada, para atender às normas fitossanitárias de alguns países) e embalagens múltiplas em selas.

Para embalagens especiais, entre em contato com o Departamento Comercial da OMARLIFT.

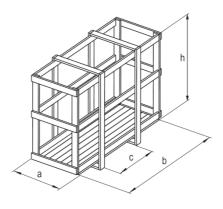
Fig. 2 – Embalagem padrão: as peças em madeira não fazem parte da embalagem do cilindro único.

Fig. 3 – Embalagem múltipla

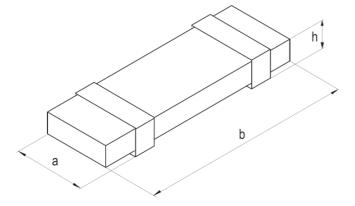


4.11.2 EMBALAGEM PARA UNIDADE DE CONTROLE

As unidades de controle OMARLIFT são fornecidas com embalagem padrão, constituída por celofane termorretrátil. O filtro de torneira, a alavanca da bomba de mão, o tubo em PVC para a recuperação do óleo, os antivibratórios e os manuais de instrução estão em uma caixa de papelão apoiada no reservatório.


A pedido específico do Cliente, é possível utilizar embalagens opcionais, como pallets com cobertura em papelão (com pallet em madeira ou madeira tratada, para atender às normas fitossanitárias de alguns países) e gaiola em madeira. Para embalagens especiais, entre em contato com o Departamento Comercial da OMARLIFT.

Dimensões da unidade de controle com pallet + papelão							
Tipo de unidade de controle	а	b	h				
110/S	830	350	1100				
135/S	830	350	1300				
210/S	950	450	1220				
320/S	1130	530	1300				
450	1200	800	1430				
680	1400	860	1500				


Dimensões da unidade de controle com gaiola sem tubo flex							
Tipo de unidade de controle	a	b	С	h			
50/S	400	700	> 650	900			
110/S	400	880	> 650	1200			
135/S	400	880	> 650	1400			
210/S	500	1000	> 650	1250			
320/S	560	1120	> 650	1530			
450	800	1180	> 650	1500			
680	920	1430	> 650	1820			
HE 110	400	880	> 650	1400			
HE 135	400	880	> 650	1450			
HE 210	500	1000	> 650	1420			
HE 320	560	1120	> 650	1530			

4.11.3 EMBALAGEM PARA ARMÁRIOS MRL

Os armários são fornecidos com embalagem padrão em papelão e dois suportes em madeira. A pedido específico do Cliente, é possível fornecer até no máximo quatro armários sobrepostos em um pallet.

Para solicitações especiais, entre em contato com o Departamento Comercial da OMARLIFT.

Imballo standard per Armadio

Dimensões da embalagem com suporte em madeira						
Tipo de unidade de controle	а	b	h			
110/S	550 mm	2100 mm	220 mm			
210/S	700 mm	2100 mm	220 mm			
50/S	700 mm	2100 mm	220 mm			
1300/S	910 mm	1600 mm	130 mm			
1550/S	910 mm	1600 mm	130 mm			

Dimensões da embalagem sujeitas a variações

Imballo multiplo su pallet

4.12 FUNDOS ANTIÓLEO

A normativa EN81-20 em vigor, parágrafo 5.2.1.9, exige que, para os elevadores hidráulicos, o espaço onde a unidade de controle e o fosso se encontram sejam projetados de modo que seja impermeável, para que todo o fluido contido no maquinário posicionado nessas áreas seja retido em caso de vazamentos ou escapes.

A escolha é, de todo modo, de pertinência do Fabricante do equipamento completo, levando-se em conta as características construtivas do fosso. A Omarlift previu fundos antióleo capazes de atender ao requisito normativo, contendo todo o óleo da unidade de controle, exceto o de carregamento das tubulações do sistema e do cilindro, ou soluções de "primeiros socorros", de altura reduzida e mais práticas, mas capazes de conter uma capacidade parcial.

Veja a seguir os códigos dos fundos antióleo e as respectivas dimensões principais. A última coluna fornece uma indicação da aplicação a que cada fundo é principalmente dedicado.

DIMENSÕES PRINCIPAIS	APLICAÇÃO
Fundo antióleo 280 x 600 x 40	50/S
Fundo antióleo 340 x 740 x 40	60/S - 110/S - 135/S
Fundo antióleo 340 x 740 x 500	60/S - 110/S - 135/S
Fundo antióleo 380 x 650 x 40	C40 - C50
Fundo antióleo 380 x 650 x 260	C40 - C50
Fundo antióleo 500 x 1000 x 40	210/S - 320/S
Fundo antióleo 500 x 1000 x 500	210/S - 320/S
Fundo antióleo 750 x 1050 x 40	450
Fundo antióleo 750 x 1050 x 500	450
Fundo antióleo 850 x 1300 x 40	680
Fundo antióleo 850 x 1450 x 500	450 + microniv
Fundo antióleo 950 x 1000 x 500	320/S + microniv
Fundo antióleo 950 x 1400 x 500	680
Fundo antióleo 1150 x 1100 x 500	450 + microniv
Fundo antióleo 1200 x 1400 x 500	680 + microniv
Fundo antióleo 1300 x 1500 x 150	680+resfr H ₂ O+microniv
A pedido	900 - 1000 - "Baixinho"
	Fundo antióleo 280 x 600 x 40 Fundo antióleo 340 x 740 x 40 Fundo antióleo 340 x 740 x 500 Fundo antióleo 380 x 650 x 40 Fundo antióleo 380 x 650 x 260 Fundo antióleo 500 x 1000 x 40 Fundo antióleo 500 x 1000 x 500 Fundo antióleo 750 x 1050 x 40 Fundo antióleo 750 x 1050 x 500 Fundo antióleo 850 x 1300 x 40 Fundo antióleo 850 x 1450 x 500 Fundo antióleo 950 x 1000 x 500 Fundo antióleo 950 x 1000 x 500 Fundo antióleo 1150 x 1100 x 500 Fundo antióleo 1150 x 1100 x 500 Fundo antióleo 1200 x 1400 x 500 Fundo antióleo 1200 x 1400 x 500 Fundo antióleo 1300 x 1500 x 150

5 MONTAGEM – CALIBRAÇÃO – MANUTENÇÃO

5.1 INFORMAÇÕES GERAIS

5.1.1 INTRODUÇÃO

A montagem, a instalação, a entrada em funcionamento e a manutenção do elevador hidráulico devem ser realizadas somente por profissionais especializados. Antes de se dar início a qualquer trabalho nos componentes hidráulicos, é indispensável que os profissionais encarregados leiam atentamente as instruções de operação do Manual de Instruções para componentes hidráulicos (D840M), que deve ser conservado em um local protegido e acessível. Para advertências sobre as responsabilidades, garantia de segurança e limpeza, consulte os itens correspondentes do manual indicado acima.

5.1.2 INSTALAÇÃO DE CILINDROS E UNIDADES DE CONTROLE

Para a instalação ou a substituição de componentes do sistema hidráulico, é necessário observar os seguintes pontos:

- Use exclusivamente materiais aconselhados pela OMARLIFT e peças de reposição originais da OMARLIFT.
- Evite o uso de selantes como silicone, estuque ou cânhamo, que podem penetrar no circuito hidráulico.
- Se forem usadas tubulações adquiridas de outros fornecedores, escolha sempre e somente as que, no que diz respeito à segurança, estiverem em conformidade com as normativas em vigor e que forem adequadas ao nível de pressão do sistema. Tenha em mente que o uso apenas de tubos de ferro para conectar a unidade de controle ao cilindro pode transmitir e aumentar o nível de ruído.
- Instale tubos flexíveis com o raio de curvatura correto sugerido pelos fabricantes e evite o uso de tubos mais longos do que o necessário.

5.1.3 MANUTENÇÃO

Durante as visitas periódicas de manutenção, além das verificações normais, convém lembrar:

- Os tubos danificados devem ser imediatamente substituídos.
- Os vazamentos de óleo e suas causas devem ser eliminados de imediato.
- O óleo eventualmente vazado deve ser coletado, de modo a facilitar a identificação dos vazamentos.
- Assegure-se de que não haja ruídos insólitos e excessivos na bomba, no motor ou nas suspensões. Se for o caso, elimine-os.

5.1.4 PRECAUÇÕES ANTIPOLUIÇÃO

O óleo eventualmente vazado do circuito durante as operações de reparação não deve ser disperso no meio ambiente, mas deve ser prontamente coletado com esponjas e panos e posto em recipientes adequados. Em caso de substituição, o óleo usado também deve ser posto em recipientes adequados. Para o descarte do óleo ou dos panos sujos de óleo, é necessário consultar empresas especializadas, seguir taxativamente as normas em vigor no país em que se está operando, inclusive aquelas contra a poluição das águas, e seguir as normas nacionais.

5.1.5 VERIFICAÇÃO DO MATERIAL FORNECIDO

Ao se retirar o material ou, de todo modo, antes de recebê-lo do transportador, verifique se a mercadoria corresponde ao que está listado no documento de transporte e ao que foi pedido na encomenda, levando em conta ainda as condições de venda da OMARLIFT.

Os componentes principais fornecidos contam com uma placa contendo os dados completos para sua identificação:

- Cilindro: placa adesiva no cilindro.
- Válvula de bloqueio: placa adesiva na lateral da válvula.
- Unidade de controle: placa adesiva na tampa do reservatório.

 Tubo flexível: data de inspeção, pressão de inspeção e sigla do fabricante gravados na conexão, além do certificado de inspeção.

5.1.6 REQUISITOS DO LOCAL DO ELEVADOR

Antes de dar início aos trabalhos de instalação:

- Assegure-se de que o v\u00e3o de curso, o fosso, a extremidade superior e a sala de m\u00e1quinas correspondam aos dados do
 projeto e atendam aos requisitos das normativas em vigor.
- Assegure-se de que as vias de acesso sejam suficientes para a passagem dos vários componentes a serem instalados.
- Assegure-se de que o fundo do fosso esteja limpo, seco e impermeabilizado contra infiltrações de água.
- Assegure-se de que o v\u00e3o de curso seja convenientemente ventilado e suficientemente iluminado.
- Assegure-se de que a porta de ingresso do local da máquina tenha a abertura para fora, que, se possível, seja acusticamente isolado, tenha uma boa ventilação e que sua temperatura esteja de preferência entre 10 e 30 °C.

5.2 INSTALAÇÕES DOS CILINDROS

5.2.1 INFORMAÇÕES GERAIS

A haste do cilindro é bloqueada com uma braçadeira na camisa, de modo que não possa sair durante a movimentação e o transporte.

Nos cilindros em duas peças, as duas juntas são protegidas por dois flanges de proteção, bloqueados aos flanges do cilindro com dois parafusos. Os dois flanges de proteção sevem para manter bloqueadas as duas partes da haste e impedir a entrada de sujeira e água.

5.2.2 TRANSPORTE E ARMAZENAMENTO DOS CILINDROS

- A carga e a descarga dos meios de transporte devem ser feitos com talhas ou empilhadeiras adequadas.
- Se o cilindro for içado na vertical, a haste deve estar voltada para cima e os cabos de içamento devem estar fixados no cilindro, e não na haste (ver Fig. 4).
- Se o cilindro for içado com empilhadeira, ele deve ser preso pela metade e as pás da empilhadeira devem estar posicionadas na máxima distância.
- Se for necessário fazer o cilindro rolar, isso deve ser feito muito lentamente, para evitar amassar a haste. De preferência, distenda o cilindro na horizontal no plano de carregamento do caminhão, evitando apoiá-lo com trancos no teto da cabine, para evitar que as vibrações durante o transporte produzam amassados na haste.

Fig. 4 - Içamento do cilindro

- Antes do armazenamento, verifique o perfeito estado de conservação das embalagens de proteção
- Após colocá-los em suportes adequados, prenda-os de modo que não possam cair.
- Se for necessário armazenar os cilindros em uma peça por um longo período, convém enchê-los com óleo anticorrosão.
 Uma vez que o volume de óleo varia com a temperatura, convém não encher completamente o cilindro.
- Se for necessário armazenar por um longo período os cilindros em duas peças, verifique se os flanges de fechamento da junta se fecham hermeticamente e se as hastes estão bem engraxadas. Mantenha bem recobertos de graxa tanto os flanges de fechamento quanto a parte da haste para fora do cilindro.
- Antes da entrada em funcionamento, troque o óleo de enchimento e retire a eventual graxa em excesso.

5.2.3 OCILINDRO

O número de série do cilindro está indicado em uma etiqueta na cabeça do próprio cilindro, no lado onde está fixada a válvula de bloqueio, e é ainda indicado na placa de identificação, junto dos outros dados do cilindro.

- Todos os cilindros são testados na oficina com dois níveis de pressão, para garantir a retenção das vedações e das soldaduras.
- Além dos testes de pressão, os cilindros telescópicos são verificados no que diz respeito ao sincronismo e aos comprimentos dos cursos dos vários estágios.
- O óleo utilizado para os testes é retirado de dentro dos cilindros, e o que resta é, de todo modo, suficiente para garantir uma boa proteção contra a ferrugem por um bom tempo. Convém verificar o estado de conservação da haste e, se for o caso, limpar e polir, em especial se os cilindros permanecerem por muito tempo no canteiro de obras.
- O engate do óleo (e, portanto, a válvula de bloqueio) pode se encontrar no alto ou embaixo, mas isso deve ser concordado na fase de encomenda.
- A válvula de bloqueio, montada diretamente no cilindro, pode ter quatro orientações, a intervalos de 90°.
- Se, no vão do elevador, for necessário realizar obras de alvenaria, pintura ou soldadura, é necessário proteger a cabeça do cilindro com graxa e panos e limpar cuidadosamente antes da entrada em movimento sucessiva do equipamento.
- O cilindro deve ser montado perfeitamente em nível e, com a haste aberta, deve estar sempre perfeitamente paralelo às guias.
- Todos os cilindros contam com uma conexão em cotovelo na cabeça. Essa conexão serve para a recuperação do óleo vazado do cilindro. Essa conexão deve ser apertada no furo rosqueado correspondente, na parte mais alta do cilindro, e conectada ao galão de recuperação de óleo com um tubo em PVC, de modo que a quantidade de vazamento possa ser controlada.

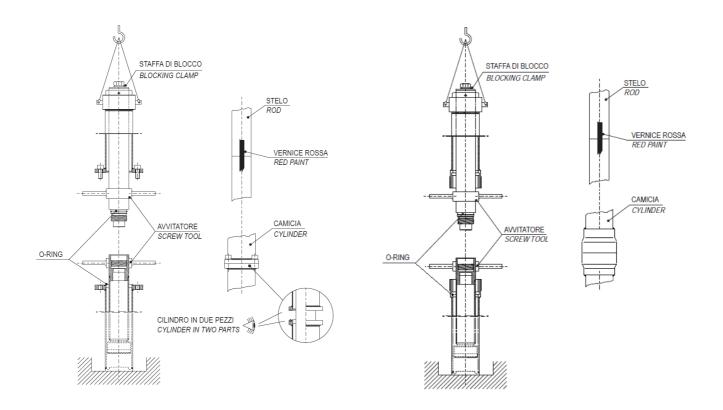
5.2.4 MONTAGEM DE CILINDROS INDIRETOS LATERAIS EM UMA PEÇA

Os cilindros indiretos laterais com relação 2:1 são fornecidos sem chapas e têm um só telescópico, montado em um pilar (ou o mesmo sistema com dois cilindros).

- O pilar é fixado na parte de baixo na viga de fundo do fosso e, na parte do alto, na parede ou nas guias com fixação regulável.
- O cilindro está apoiado em um suporte regulável montado sobre o pilar. Entre o pilar e o cilindro, pode ser interposto um disco em material isolante antivibrações.
- A cabeça do cilindro é fixada, por meio de uma gravata, de modo regulável, na parede ou nas guias. Em função do comprimento do cilindro, podem estar previstos outros pontos intermediários de fixação. Para isso, siga o desenho de projeto do equipamento.
- Para obter um maior nível de silêncio, utilize sempre a borracha entre a gravata e o pescoço do cilindro.
- A polia montada na cabeça da haste deve ser bem guiada, sem excessos de folga nas guias e sem ser forçada ao longo de todo o curso.

5.2.5 MONTAGEM DE CILINDROS INDIRETOS LATERAIS EM DUAS OU MAIS PEÇAS

- Nos cilindros construídos com duas (ou mais) peças, a junta da haste é rosqueada, enquanto a junta da camisa tem o flange quadrado.
- A metade superior do cilindro em duas peças tem a haste mais longa do que a camisa, o que permite fixar o parafusador à haste sem desmontar o cilindro.
- As duas juntas do cilindro em duas peças são fechadas hermeticamente por duas tampas em metal, com a função de proteção e embalamento para o transporte.
- Os parafusadores especiais ou outras ferramentas, bem isoladas com borracha, devem ser fixados na metade inferior da haste, em posição horizontal, antes de se erguer o cilindro na vertical. Para evitar danos à haste durante o parafusamento, após retirar as tampas de proteção, entre a haste e a camisa, é necessário colocar tiras de borracha, bem fixadas aos parafusos dos flanges. Só retire as tiras antes de fechar os flanges quadrados do cilindro.


Para a montagem das duas peças, siga as instruções abaixo:

- Coloque a metade inferior do cilindro na vertical e fixe-a em uma posição bem nivelada, após bloquear a haste com o parafusador.
- Bloqueie a haste da metade superior com o parafusador ou com outra ferramenta isolada com borracha, sem deixálo sair da cabeça porta-vedações. A braçadeira de bloqueio superior da haste só deve ser retirada com os trabalhos concluídos.
- Com uma talha, faça o içamento da metade superior do cilindro engatando-a pelas duas orelhas soldadas na cabeça,
 e alinhe-a perfeitamente em eixo com a metade inferior.
- Desengraxe e limpe as roscas macho e fêmea, evitando que o solvente entre em contato com o O-ring da junta.
- Verifique cuidadosamente se não há amassados nas roscas nem em outras zonas da junta. Se for o caso, elimine-os.
- Verifique se o O-ring da junta não está danificado e se está bem engraxado.
- Abaixe a metade superior do cilindro e aproxime lentamente as roscas, sem impactos violentos. Verifique o alinhamento e aperte até o fim sem colocar o líquido trava-roscas. Se notar dificuldades de rosqueamento, desrosqueie imediatamente, verifique as roscas e tente novamente.
- Após rosquear completamente as duas partes, solte em 4-5 giros, aplique o trava-roscas no parafuso (não no OR) e, então, aperte de novo rapidamente até o fim, verificando se as duas marcas em tinta vermelha estão alinhadas (tolerância máxima de 4-5 mm).
- Retire os parafusadores e verifique com os dedos se a junta da haste está perfeita em toda a circunferência, sem amassados nem o mínimo desnível. Se for o caso, lixe com uma lixa de esmeril muito fina (grão 400-600).
- Verifique se o O-ring do flange inferior está perfeito e bem assentado na sua posição. Limpe os dois flanges.
- Aproxime os dois flanges quadrados prestando atenção para combinar o pino com o furo. Por fim, aperte até o fim os quatro parafusos que bloqueiam os flanges, apertando-os em diagonal.

No caso de cilindros em três peças, aconselha-se proceder da seguinte maneira:

- Na primeira fase, procede-se à montagem da parte inferior (1) do cilindro com a parte intermediária (2), considerando-se estas duas partes como um cilindro em duas peças e seguindo as advertências dadas nos pontos acima. Para facilitar esta operação, a camisa da parte intermediária pode ser completamente retirada e recolocada após as primeiras duas peças serem montadas.
- Na segunda fase, procede-se à montagem da parte superior (3) com das duas peças anteriormente montadas (1) + (2). Também nesta última fase, pode-se proceder como na montagem do cilindro em duas peças e seguir as mesmas advertências anteriormente dadas.

5.2.6 MONTAGEM DE CILINDROS PADRÃO E TELESCÓPICOS DIRETOS LATERAIS

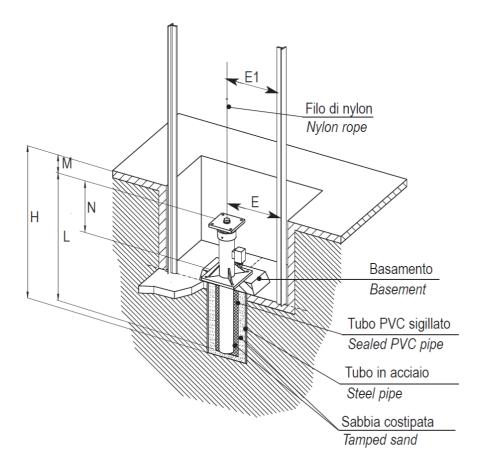
Os cilindros diretos laterais de relação 1:1 têm um telescópico ou 2 ou 3 telescópicos (ou o mesmo sistema, mas com dois cilindros) e são fornecidos com uma chapa inferior de apoio e uma superior oscilante.

- O cilindro é apoiado diretamente no fundo do fosso por meio da sua chapa inferior. A cabeça da haste é fornecida com uma articulação esférica, para se poder engatar a arcada de modo flexível, para que não se transmitam exigências de flexão. A articulação esférica deve ser engraxada antes de se fixar a chapa à arcada.
- No caso do cilindro telescópico, para a segurança no pico de carga, pode ser necessário aplicar braços de guia intermediários; nesse caso, as cabeças do telescópico são fornecidas com engates para os braços de guia, que, no entanto, devem ser construídos e instalados aos cuidados do instalador. Verifique o projeto e siga-o escrupulosamente.

5.2.7 MONTAGEM DOS CILINDROS PADRÃO E DOS TELESCÓPICOS DIRETOS CENTRAIS

Os cilindros diretos centrais enterrados são fornecidos com uma chapa superior articulada esférica e com uma chapa de apoio intermediária, que, para os cilindros telescópicos, também é articulada. A parte do cilindro abaixo da chapa intermediária é protegida com uma tinta especial anticorrosão preta.

- As chapas articuladas devem ser engraxadas nos seus pontos móveis antes de serem instaladas.
- Antes de se dar início à instalação do cilindro, convém verificar as dimensões do buraco que deverá conter o próprio cilindro.
- O cilindro deve ainda ser protegido contra a corrosão e deve ser instalado dentro de um tubo de proteção. Somente com a instalação perfeitamente funcionante, o cilindro poderá ser eventualmente compactado.
- O posicionamento do cilindro deve respeitar exatamente as medidas indicadas no projeto.
- Para o nivelamento do cilindro e seu paralelismo com as guias, aconselha-se:
- a) Diretos centrais normais de um telescópico: puxar o fio de nylon em nível no interior da haste e verificar se ele sai perfeitamente no centro do furo rosqueado da haste e se está paralelo às guias.
- b) Diretos centrais telescópicos de 2 ou 3 telescópicos: a chapa intermediária oscilante permite automaticamente o alinhamento do cilindro com as guias e seu nivelamento, mas é necessário que o diâmetro do buraco no terreno seja maior do que o diâmetro externo do cilindro e que a articulação da chapa de apoio esteja bem engraxada. Nessas condições, a parte enterrada se alinhará automaticamente com as hastes quando o cilindro empurrar a cabine.


L = Comprimento do cilindro completamente fechado.

N = Altura do cilindro direto central segundo o catálogo.

M = Espessura do fundo da cabine e arcada + extra-curso inferior.

H = Profundidade total do fosso + furo no terreno > L + M.

E1 = E = Altura medida no nível da chapa oscilante

Esempio di cilindro interrato ad azionamento diretto centrale

5.3 INSTALAÇÃO DAS UNIDADES DE CONTROLE

5.3.1 INFORMAÇÕES GERAIS

A unidade de controle hidráulica OMARLIFT é constituída pelos seguintes componentes: reservatório, grupo da válvula, grupo do motor da bomba de imersão, filtro inspecionável, caixa de conexões elétricas e outros acessórios sob encomenda. É protegida por um saco plástico e pode ser montada sobre um suporte de madeira. Sob encomenda, a unidade de controle pode ser embalada com papelão ou gaiola de madeira.

5.3.2 TRANSPORTE E ARMAZENAMENTO DAS UNIDADES DE CONTROLE

A carga e a descarga das unidades de controle dos meios de transporte devem ser feitas com empilhadeiras. As unidades de controle podem ser içadas em duas maneiras. Os modelos 110/S, 210/S e 320/S devem ser eslingados passando-se cabos sob os pegadores. Os modelos 450, 680 e especiais, passando-se os cabos nos olhais correspondentes, conforme mostrado na Fig. 5 nesta página.

Não utilize furos diferentes dos disponibilizados para o engate dos olhais.

- As unidades de controle n\u00e3o podem ser sobrepostas.
- Armazene as unidades de controle em um ambiente seco com temperatura entre 5 e 30 °C.
- Verifique a embalagem protetiva e, se for o caso, substitua-a.
- Se for necessário armazenar as unidades de controle por um longo período de tempo, convém encher o reservatório com óleo, pelo menos até cobrir o motor elétrico.

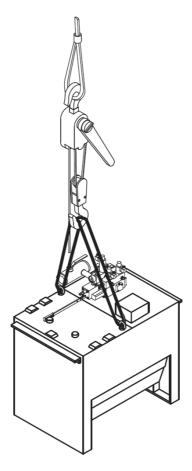


Fig. 5 - Içamento com olhais

5.3.3 UNIDADE DE CONTROLE

O número de série da unidade de controle se encontra na placa adesiva localizada na tampa do reservatório.

- Verifique o estado de conservação da unidade de controle e, se necessário, limpe e seque bem o interior do reservatório.
- Todas as unidades de controle e o filtro de torneira são testados e regulados na oficina antes da expedição. Portanto, podem entrar em funcionamento imediatamente, sem a necessidade de execução de novas regulagens. Com a instalação concluída, após encher com óleo e fazer o expurgo do ar, para otimizar o funcionamento do sistema, podese eventualmente retocar a baixa velocidade e a desaceleração.
- O local de posicionamento da unidade de controle deve se encontrar o mais próximo possível do vão do elevador, ser suficientemente grande, não estar exposto a fortes variações de temperatura e, se possível, ser aquecido no inverno e bem ventilado no verão. Para distâncias superiores a 8-10 metros, é necessário ter em conta as perdas de pressão ao longo do tubo de envio.
- Para evitar a transmissão de ruído aos ambientes adjacentes, convém utilizar os antivibratórios sob os pés do reservatório e um trecho de tubo flexível para a conexão da unidade de controle ao cilindro.
- O reservatório dispõe de pegadores para seu deslocamento manual e para o eventual içamento com a talha.
- Para a conexão hidráulica, siga as indicações do item 5.4 deste catálogo.
- Encha o reservatório com óleo novo e de boa qualidade. A qualidade do óleo deve permitir que, com o cilindro totalmente aberto, o nível esteja pelo menos acima do motor, e com o cilindro completamente fechado, esteja no máximo 8-10 cm abaixo da tampa.
- Para a conexão elétrica, siga as indicações do item 5.6 deste catálogo.

5.4 TUBULAÇÕES E CONEXÕES HIDRÁULICAS

5.4.1 INFORMAÇÕES GERAIS

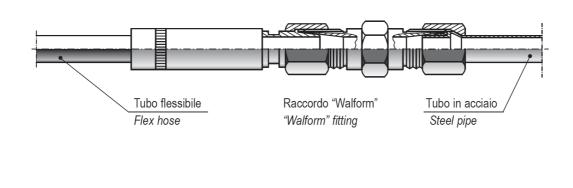
Para a conexão da unidade de controle ao cilindro, podem ser usados tanto tubos em aço trefilados a fio, normalizados e decapados especiais para circuitos oleodinâmicos, quanto tubos flexíveis para alta pressão testados e certificados, ou tubulações mistas. O filtro de torneira pode ser girado para ser melhor alinhado à direção do tubo. A tubulação de saída do óleo deve seguir o percurso mais breve, evitar as curvas estreitas e limitar ao mínimo o uso de conexões em cotovelo.

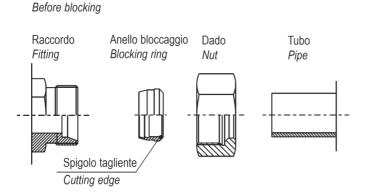
5.4.2 TRANSPORTE E ARMAZENAMENTO DOS TUBOS

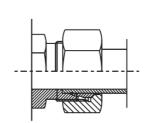
- Evite dobras bruscas nos tubos flexíveis.
- Evite o contato dos tubos flexíveis com substâncias cáusticas, solventes ou outras substâncias químicas.
- Transporte os tubos flexíveis na sua embalagem original.
- Evite qualquer tipo de curvatura nos tubos rígidos.
- Transporte os tubos rígidos com suas tampas nas extremidades.
- Armazene os tubos em um local seco com temperaturas entre 5 e 30 °C.
- Evite armazenar os tubos flexíveis à luz direta do sol ou próximo de fontes de calor.
- Não mantenha os tubos flexíveis no armazém por mais de dois anos a partir da data de inspeção indicada na conexão.

5.4.3 CONEXAÕ DE TUBOS RÍGIDOS

O tubo rígido a ser utilizado deve ser de tipo oleodinâmico, trefilado a frio, normalizado, decapado e em bom estado de conservação.


Um tubo dimensionalmente imperfeito, com amassados ou de dureza elevada não pode garantir uma retenção perfeita. Para a montagem, siga escrupulosamente as instruções abaixo:

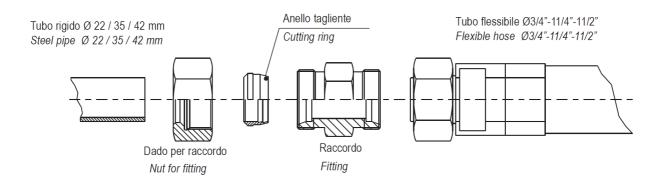

- Corte o tubo em ângulo perfeitamente reto e retire as farpas.
- Eventuais dobras devem ser feitas a frio com dobradores de tubos adequados.
- O uso de chamas pode produzir escórias dentro do tubo.
- Lubrifique as roscas e o anel de corte da conexão.
- Monte a conexão no tubo na sequência indicada no desenho, com o cuidado de que a parte cortante do anel esteja voltada para a extremidade do tubo, e aperte a porca à mão.
- Empurre o tubo contra o assento da conexão e aperte a porca com força por cerca de 1 giro e meio utilizando uma chave com extensão, de modo que a aresta cortante do anel penetre na parede do tubo.
- Solte a porca e verifique se a incisão do tubo por parte do anel está perfeita em toda a circunferência e se o anel cortante está bloqueado em cerca de 5 mm da borda do tubo.
- Aperte definitivamente a porca apertando até o fim.


Prima del bloccaggio

Os tubos não normalizados são duros demais e podem sair da conexão.

ATENÇÃO: as normas nacionais de alguns países não permitem o uso da junção com anel cortante. Nesses casos, é necessário utilizar um tipo de conexão denominado WALFORM, ou conexões de soldar.

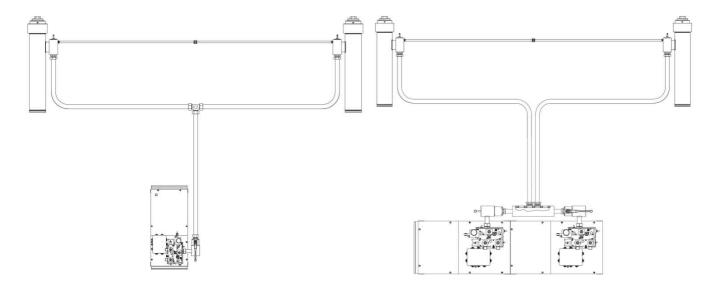
Dopo il bloccaggio


After blocking

5.4.4 CONEXÃO DE TUBOS FLEXÍVEIS

O tubo flexível não deve estar sujeito a tensões ou torções e as curvas devem ser o mais amplas possível. Os tubos flexíveis de dimensões 3/4" -11/4" -11/2" dispõem de conexões com porca giratória com rosca métrica "M" e terminal cônico 24°. Podem ser conectados com as mesmas conexões utilizadas para os tubos rígidos. Para isso, é necessário retirar da conexão a porca giratória e o anel cortante e apertar diretamente na conexão a porca giratória do tubo flexível. Para uma melhor retenção, as conexões destes tubos flexíveis dispõem de O-ring. As conexões de junção 3/4" -11/4" -11/2" também podem ser utilizadas para a conexão de tubos rígidos com tubos flexíveis.

Os tubos flexíveis de 2" dispõem de conexões terminais com porca giratória com rosca 2" Gas e terminal cônico 60°. Podem ser encaixados com conexões macho-macho 2" Gas dotados de cone de 60°. Sua conexão é feita simplesmente apertando-se a porca giratória do tubo flexível na conexão.


Para obter informações específicas sobre as conexões, consulte o capítulo 4.8 deste catálogo.

5.5 CONEXÃO DE EQUIPAMENTOS COM DOIS CILINDROS

Nos equipamentos com dois cilindros, os tubos que alimentam os dois cilindros devem ter o mesmo diâmetro, o mesmo comprimento e seguir percursos o mais simétricos possível.

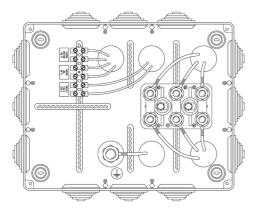
As válvulas de bloqueio devem estar conectadas hidraulicamente entre si para permitir o balanceamento da pressão de pilotagem. As válvulas de bloqueio são fornecidas com um engate rosqueado de 1/8". A conexão deve ser feita com conexões de 1/8" e tubos em aço de 6 mm de diâmetro e 1 mm de espessura ou tubos flexíveis de 1/4" de diâmetro.

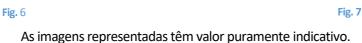
VAZÃO DA UNIDADE DE CONTROLE	GRANDEZAS VP	DIM	ENSÕES DOS TUE	BOS	CONEXÕES DE TRÊS VIAS	CONEXÃO FR
l/min	VP1=VP2	L3 L2 L1		-	-	
55 ÷ 150	VP 114	Ø 35-11/4"	Ø 35 – 1 1/4"	Ø 35 – 1 1/4"	3 x Ø 35	Ø35-11/4"
180÷300	VP 114	Ø 42 – 1 1/2"	Ø 35 – 1 1/4"	Ø 35 – 1 1/4"	3 x Ø 42 + 2 x Ø 42/35	Ø42-11/2"
360÷600	VP 112	2"	Ø 42 – 1 1/2"	Ø 42 – 1 1/2"	Ø11/2"+2ר11/2"	2"
360÷600	VP 112	Ø2xØ42	Ø 42 – 1 1/2"	Ø 42 – 1 1/2"	Ø 1 1/2" + 2 x Ø 1 1/2"	2"

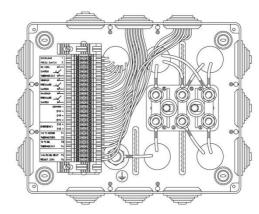
VAZÃO DA UNIDADE DE CONTROLE	GRANDEZAS VP	CONEXÃO COM 1 TUBO A CADA CILINDRO	CONEXÃO COM 2 TUBOS	
l/min	VP1=VP2	L1=L2	-	
2 x 100 ÷ 150	2 x VP 114	Ø 35 x 2,5/1 1/4"	-	
2 x 180 ÷ 300	2 x VP 112	Ø 42 x 3/1 1/2"	-	
2 x 360 ÷ 600	2 x VP 200	2″ 2ר(42×3)/2		

5.6 CONEXÕES ELÉTRICAS

5.6.1 INFORMAÇÕES GERAIS


As conexões elétricas devem ser realizadas por profissionais qualificados, respeitando as normas específicas.


- Antes de se dar início a qualquer trabalho, é necessário desconectar a corrente elétrica abrindo o interruptor geral.
- Os cabos de alimentação da potência elétrica devem ter a seção suficiente para a corrente exigida e o isolamento adequado para a tensão da rede elétrica. Os cabos de conexão não devem estar em contato com partes sujeitas a um forte aquecimento.
- O cabo de aterramento deve sempre estar conectado ao parafuso marcado com o símbolo correspondente.


5.6.2 CAIXA DE CONEXÕES

A caixa de conexões se encontra na tampa da unidade de controle, perto do bloco da válvula.

- A caixa da unidade de controle padrão inclui (ver Fig. 6):
 - a) Placa de terminais do motor elétrico
 - b) Parafuso de aterramento
 - c) Termostato de temperatura do óleo de 70 °C
 - d) Termístores do motor de 110 °C
 - e) Resistência de aquecimento da válvula de 60 W (opcional)
- A caixa da unidade de controle com cabeamento (opcional) inclui (ver Fig. 7):
 - a) Placa de terminais do motor elétrico
 - b) Parafuso de aterramento
 - c) Terminais do termostato de resfriamento do óleo (opcional)
 - d) Terminais do pressostato de máx. (opcional)
 - e) Terminais do pressostato de mín. (opcional)
 - f) Terminais da bobina EVD
 - g) Terminais da bobina EVR
 - h) Terminais da bobina EVS (opcional)
 - i) Terminais da bobina EVE
 - j) Terminais dos termístores do motor de 110 °C
 - k) Terminais do termostato do óleo de 70 °C
 - I) Terminais da resistência de aquecimento da válvula (opcional)
 - m) Terminais do pressostato de sobrecarga (opcional)
 - n) Terminais EVD HDU (se presente)

5.6.3 CONEXÃO ELÉTRICA DO MOTOR TRIFÁSICO

Os terminais do motor já estão fixados na placa de terminais dentro da caixa de conexões.

- No caso de arranque direto do motor (ou com soft-starter), é necessário que a frequência e uma das tensões do motor correspondam à frequência e à tensão da rede elétrica.
- As barras de conexão na placa de terminais devem respeitar o esquema indicado na placa do motor ou as indicações dadas na tabela. (ver Fig. 8).
- No caso de arranque com soft-starter, siga as indicações do fabricante.
- No caso de arranque estrela-triângulo, o motor deve ter a tensão mais baixa igual à tensão de rede. A frequência deve ser igual à frequência de rede.
- Para o arranque estrela-triângulo, as barras de conexão da placa de terminais devem ser eliminadas. (ver Fig. 9).

DISPOSIÇÃO DAS BARRAS DE CONEXÃO PARA PLACAS DE TERMINAIS DE MOTORES TRIFÁSICOS

ARRANQUE DIRETO

Linha 230 V - Motor 230 / 400

Linha 400 V - Motor 400 / 690

Linha 415 V – Motor 415 / 720

Linha 400 V – Motor 230 / 400

Linha 690 V - Motor 400 / 690

Linha 720 V - Motor 415 / 720

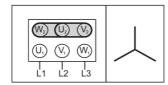


Fig. 8

- Retire as barras de conexão.
- A sequência das conexões é realizada pelo quadro.

Linha 230 V - Motor 230 / 400

Linha 400 V - Motor 400 / 690

Linha 415 V – Motor 415 / 720

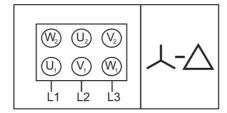
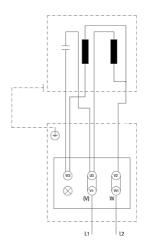


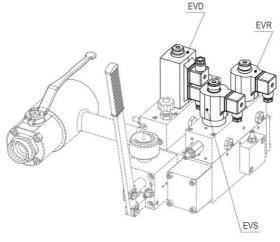
Fig. 9

A comutação ocorre indicativamente em um tempo de 1 a 2 seg.

5.6.4 CONEXÃO ELÉTRICA DO MOTOR MONOFÁSICO

O motor monofásico é fornecido com o condensador adequado. Para a conexão correta, siga o esquema do fabricante do motor ou o esquema indicado na Fig. 10.




Fig. 10

5.6.5 CONEXÃO ELÉTRICA DO GRUPO DE VÁLVULAS

A válvula NL (ver Fig. 11) prevê as seguintes eletroválvulas:

- EVD = Eletroválvula de descida (tanto normal quanto em emergência)
- EVR = Eletroválvula de desaceleração (alta velocidade)
- EVS = Eletroválvula de subida (estrela-triângulo ou soft-starter)

O esquema para as conexões elétricas é indicado na Fig. 12.

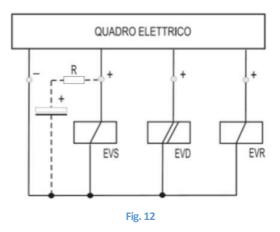


Fig. 11

As eletroválvulas têm as seguintes funções:

- ELETROVÁLVULA EVD com bobina dupla: comanda a descida, tanto normal quanto em emergência com bateria a 12
 Vcc. Alimentada sozinha, permite a descida em baixa velocidade. Esta eletroválvula deve ser alimentada somente na descida por toda a duração do curso. Junto da EVR, permite a alta velocidade.
- ELETROVÁLVULA EVR com bobina simples: comanda a alta velocidade e a desaceleração. Esta válvula deve ser alimentada tanto na descida quanto na subida para se obter a alta velocidade; deve ser desexcitada antes de se chegar ao andar, para se obter a desaceleração e a baixa velocidade. Para se obter uma boa desaceleração, a bobina EVR deve ser desexcitada a uma distância do andar de chegada, que maior será quanto mais alta for a velocidade do sistema. A distância de desexcitação da eletroválvula EVR com relação ao andar pode ser deduzida a partir dos valores na tabela:

	DESCONEXÃO EVR			
VELOCIDADE DO ELEVADOR	DISTÂNCIA EM SUBIDA	DISTÂNCIA EM DESCIDA		
0,40 m/s	0,50 m	0,60 m		
0,60 m/s	0,70 m	0,80 m		
0,80 m/s	0,90 m	1,00 m		

■ ELETROVÁLVULA EVS com bobina simples: usada para equipamentos com arranque λ – Δ ou SOFT-STARTER (fornecida sob encomenda).

Esta eletroválvula comanda a pressão do óleo. Com bobina EVS desexcitada, o óleo volta ao reservatório sem pressão por meio da válvula VM e o motor arranca e chega em regime sem carga. Somente quando o motor estiver em regime (fase de Δ para arranques $\lambda - \Delta$ ou com ciclo de arranque concluído para arranque soft-starter), alimentando-se a bobina EVS, a pressão começará a subir e se manterá no valor necessário do equipamento até que EVS seja desexcitada. Para se obter na subida uma parada suave e sem trancos, é necessário manter a bobina EVS ainda excitada por um instante após a parada. Este atraso pode ser obtido colocando-se em paralelo à bobina um condensador de cerca de $1000-1500~\mu F$ especificamente fornecido pela OMARLIFT, ou com outros sistemas diretamente no quadro elétrico. A conexão do condensador à bobina, a ser realizada somente quando não é possível obter o atraso desejado por meio do quadro elétrico, será feita de acordo com o esquema da Fig. 13.

As válvulas de arranque direto do motor não têm a eletroválvula de subida EVS. A eletroválvula de descida EVD e para a alta velocidade EVR devem ser alimentadas conforme indicado nos itens anteriores. O retardo de pressurização da bomba é realizado automaticamente pelo circuito oleodinâmico. Este sistema geralmente é usado com motores de pequena potência.

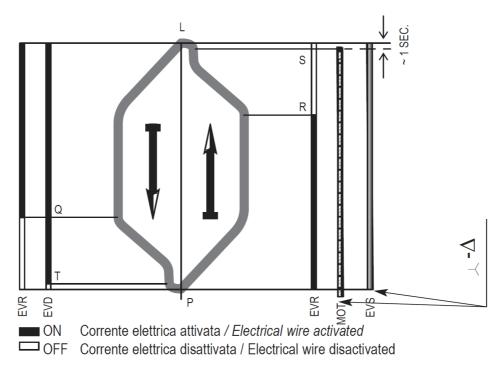


Fig. 13

Tensões disponíveis para as bobinas: 12-24-48-60-110-180-220 Vcc.

Potência das bobinas: EVS: 36 W

EVD 36 W + 45 W

EVR: 36 W

P – SUBIDA: Alimentar motor e bobina "EVR"

Alimentar bobina "EVS" para arranque

 $\lambda - \Delta$ o soft starter

R – DESACELERAÇÃO EM SUBIDA: Desexcitar "EVR"

S – PARADA EM SUBIDA: Parada do motor (desexcitar "EVS", se presente, com atraso de cerca de 1" após

o motor)

L – DESCIDA. Alimentar as bobinas "EVD" e "EVR"

Q – DESACELERAÇÃO EM DESCIDA: Desexcitar "EVR"

T – PARADA EM DESCIDA: Desexcitar "EVD"

Caso esteja presente o dispositivo de proteção contra movimentos descontrolados (válvula HDU), também é necessário gerenciar a bobina EVD HDU correspondente. Consulte o manual fornecido com a válvula HDU.

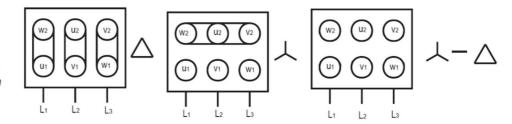
5.6.6 TERMOSTATO DE TEMPERATURA DO ÓLEO

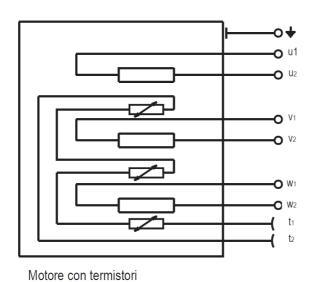
Para evitar o superaquecimento do óleo, há um termostato posicionado no interior do reservatório. Os terminais do termostato são fixados em dois terminais dentro da caixa de conexão do motor. O termostato do óleo deve ser conectado de modo que, em caso de superaquecimento do óleo, a cabine seja parada em um andar onde os passageiros possam sair. O retorno automático em serviço deve ocorrer somente após um resfriamento suficiente do óleo.

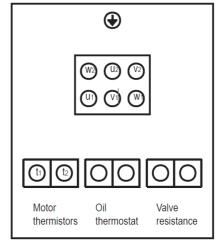
PRINCIPAIS CARACTERÍSTICAS DO TERMOSTATO			
Contato normalmente fechado	NC		
Temperatura de intervenção	70 °C – 5%		
Temperatura de reinício	55 - 35 ℃		
Tensão nominal	250 Vcc	100 Vcc	
Corrente nominal	1,6 A	2,5 A	

5.6.7 TERMÍSTORES DO MOTOR

A temperatura nos enrolamentos do motor é controlada por três termístores conectados em série. Os terminais dos termístores são fixados em dois terminais dentro da caixa de conexão do motor.

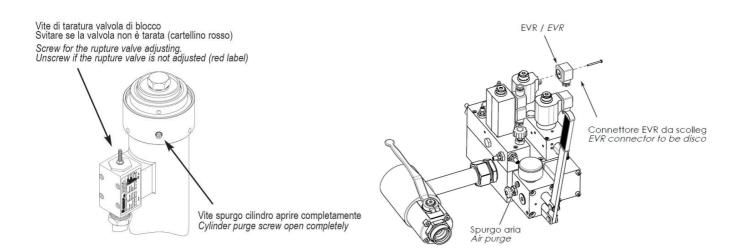

Os termístores do motor devem ser conectados a um relé eletrônico de desengate adequado capaz de sentir as variações de resistência dos termístores e, consequentemente, comandar a interrupção da alimentação do motor elétrico. Atenção, os termístores não devem ser submetidos a tensões superiores a 2,5 V. Se corretamente conectados, os termístores protegem o motor contra o superaquecimento dos enrolamentos devido a:


- Falta de fase na alimentação
- Inserções frequentes demais
- Variações excessivas de tensão
- Temperatura excessiva do óleo

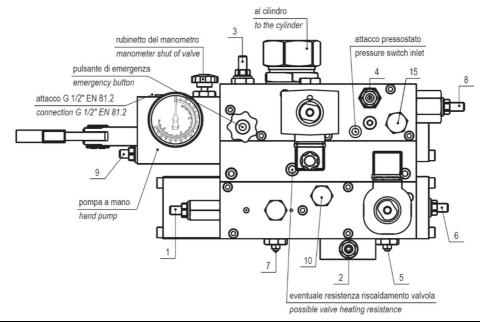

PRINCIPAIS CARACTERÍSTICAS DOS TERMÍSTORES	1 PEÇA	3 PEÇAS
Temperatura de intervenção "Ti"	110 °C	110 °C
Tolerância	-5%	-5%
Resistência a 25 °C	≤ 100 Ω	≤300Ω
Resistência a Ti-5 °C	≤ 550 Ω	≤ 1650 Ω
Resistência a Ti+5 °C	≥ 1330 Ω	≥ 3990 Ω
Resistência a Ti+15 °C	≥4 k Ω	≥ 12 k Ω
Tensão máxima de alimentação	≤ 2,5 V	≤ 7,5 V

Collegamento motore trifase Threephse motor connection

Motor with thermistors

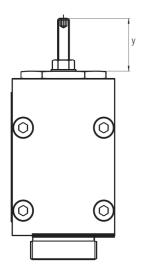

Scatola di collegamento motore *Motor connection box*

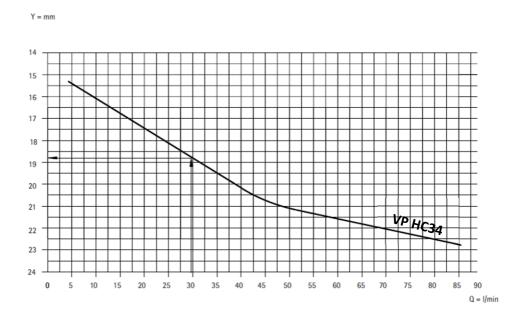
5.7 EXPURGO DO AR

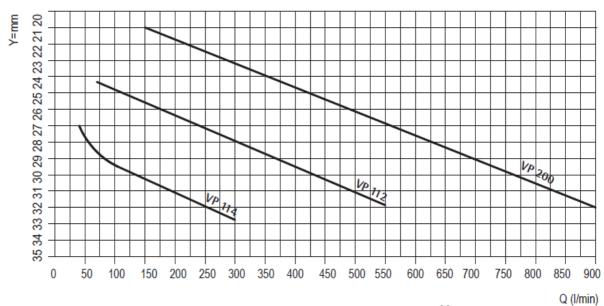

No equipamento novo, o reservatório, o cilindro, os tubos de conexão, a válvula e o silenciador estão vazios de óleo. Será, portanto, necessário encher muito bem todos os componentes do circuito hidráulico e descarregar completamente o ar neles contido. Antes de despejar o óleo no reservatório, assegure-se de que, no seu interior, não haja sujeira ou água. O ar deve ser descarregado pelo ponto mais alto do circuito, que normalmente é a cabeça do cilindro. O óleo deve entrar no circuito muito lentamente sem criar turbulências e sem misturar-se com o ar.

- Encha o reservatório com óleo novo e de boa qualidade. A quantidade do óleo deve permitir que, com o cilindro totalmente aberto, o nível esteja pelo menos acima do motor, e com o cilindro completamente fechado, o nível esteja no máximo 8-10 cm abaixo da tampa.
- Conecte o motor à eletricidade e a válvula ao quadro elétrico, verificando atentamente cada conexão.
- Abra o parafuso de expurgo na cabeça do(s) cilindro(s) e desconecte a bobina EVR de alta velocidade (isso permitirá encher o cilindro lentamente e sem turbulências).
- Feche a torneira principal e abra a torneira do manômetro. Arranque o motor e verifique o aumento de pressão no manômetro. Se o sentido de rotação não estiver correto, a pressão não aumentará e a bomba produzirá um forte ruído. Nestas condições, pare imediatamente o motor, verifique sua conexão e repita o teste.
- Abra a torneira principal, feche a torneira do manômetro e faça o cilindro encher arrancando o motor por alguns segundos, e então pare para permitir que o ar saia. Repita várias vezes esta última operação até que, do parafuso de expurgo, saia óleo límpido e sem ar; então, feche o parafuso de expurgo.
- Se forem notadas descidas ou subidas importantes da cabine devido à variação da carga, é necessário repetir o expurgo de ar após deixar o equipamento parado por algumas horas com o cilindro apoiado embaixo sem pressão e com o parafuso de expurgo aberto.
- Após realizar todas as verificações, lembre-se de bloquear os parafusos de calibragem e fechar a torneira do manômetro.

5.8 REGULAGENS DA VÁLVULA NL


PARAFUSO	DESCRIÇÃO	REGULAGENS		
N°1	Calibração da válvula de pressão máxima	Apertando, aumenta-se a pressão máxima de calibração Soltando, diminui-se a pressão de calibração		
N°2	Regulação da baixa velocidade (subida e descida)	Apertando, diminui-se a baixa velocidade Soltando, aumenta-se a baixa velocidade		
N°3	Calibragem da contrapressão da haste e antidescarrilhamento dos cabos	Apertando, a haste não desce sozinha pressionando-se o botão de emergência Soltando, a haste desce sozinha pressionando-se o botão de emergência		
N°4	Teste da válvula de bloqueio	Apertando até o fim, a velocidade da cabine tende a superar a velocidade nominal		
N°5	Estrangulador de desaceleração alta/baixa velocidade (subida/descida)	Apertando, freia-se mais lentamente Soltando, freia-se mais bruscamente		
N°6	Limitador da velocidade de subida	Apertando, reduz-se a velocidade na subida Soltando, aumenta-se a velocidade na subida até a máxima permitida pela bomba		
N°7	Pressurização do estrangulador e partida em subida	Apertando, desacelera-se a pressurização, com a consequente partida suave Soltando, a pressurização é imediata, com partida rápida		
N°8	Regulador de velocidade de descida	Apertando, aumenta-se a velocidade de descida Soltando, diminui-se a velocidade de descida		
N°9	Calibração da pressão da bomba de mão	Apertando, aumenta-se a pressão de calibragem da bomba de mão Soltando, diminui-se a pressão de calibragem da bomba de mão		
N°10	Atraso da partida em subida por soft-starter (somente na ausência de eletroválvula EVS)	Apertando, aumenta-se o atraso para a partida em subida Soltando, diminui-se o tempo de partida em subida		
N°15	Regulagem da partida em descida	Apertando, partida suave Soltando, partida rápida		




5.9 CALIBRAÇÃO E VERIFICAÇÃO DA VÁLVULA DE BLOQUEIO VP

5.9.1 CARACTERÍSTICAS GERAIS

Válvula	Conexão R	Q nominal [l/min]	Q calibragem máx. [l/min]	Intervalo de pressão [bar]
HC 034	F – 3/4" Gas	5 ÷ 55	85	10 ÷ 80
VP 114	M – 45 x 2	35 ÷ 150	300	10 ÷ 80
VP 112	M – 52 x 2	70 ÷ 300	550	10 ÷ 80
VP 200	F – 2" Gas	150 ÷ 600	900	10 ÷ 80

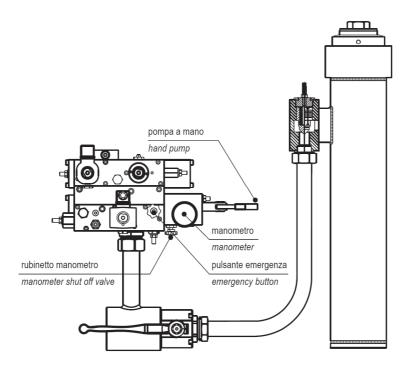


Q = PORTATA VALVOLA DI BLOCCO (TARATURA = PORTATA NOMINALE + 30%)

Q = RUPTURE VALVE FLOW (SET UP FLOW = NOMINAL FLOW + 30%)

REGULAÇÃO DA VÁLVULA DE BLOQUEIO 5.9.2

Regule a válvula de bloqueio, posicionando o parafuso de regulagem na altura Y, obtida no gráfico de calibração, com base na quantidade de óleo capaz de fazer a velocidade em descida aumentar em cerca de 30%.


Para sistemas com uma válvula de bloqueio (um só cilindro), multiplique a vazão da bomba por 1,3.

Para equipamentos com duas válvulas de bloqueio (dois cilindros), multiplique a metade da capacidade da bomba por 1,3.

- Aperte o parafuso nº 4, localizado no grupo das válvulas da unidade de controle, até o fechamento completo.
- Faça uma descida do andar mais alto ao mais baixo.
- A velocidade da cabine tenderá a aumentar, até superar a velocidade nominal.
- A válvula de bloqueio intervirá quando a velocidade de descida tiver aumentado em cerca de 30% e a cabine desacelerará até parar.
- Se, após alguns metros de curso a uma velocidade superior à nominal, a intervenção não ocorrer, pare a cabine acionando o comando "Parar" e regule de novo a válvula de bloqueio, apertando gradualmente o parafuso de regulagem (1/4 de giro de cada vez) e repita a verificação.
- Reabra o parafuso nº 4 em cerca de dois giros e bloqueie com a porca correspondente. Verifique se, nestas condições, a válvula de bloqueio não intervém em descida. Do contrário, solte ligeiramente a válvula de bloqueio e repita a verificação.
- Com o teste concluído, bloqueie o parafuso de regulagem com a porca de parada e lacre com tinta vermelha, ou então amarre com um arame fino os furos localizados um no parafuso e o outro no corpo da válvula e chumbe.

5.10 VERIFICAÇÃO E TESTE DO EQUIPAMENTO

5.10.1 TESTE DO EQUIPAMENTO A DUAS VEZES A PRESSÃO ESTÁTICA MÁXIMA

- Abra a torneira do manômetro.
- Mande o cilindro para cima até o fim e pare o motor.
- Aumente a pressão do equipamento com a bomba de mão até duas vezes a pressão estática máxima com carga completa.
- Verifique se não há vazamentos ao longo das tubulações e se a perda de pressão em 5 minutos esteja dentro de 5/6 bar a temperatura constante.
- Descarregue a pressão com o botão de emergência manual.
- Feche a torneira do manômetro e recoloque o equipamento em funcionamento.

ATENÇÃO: Este teste deve ser realizado a temperatura constante. Lembre-se de que a diminuição de 1 grau na temperatura do sistema provoca uma diminuição de pressão de 9 bar.

5.10.2 VERIFICAÇÃO DA MANOBRA MANUAL E DESCIDA DA HASTE PARA O EQUIPAMENTO EM TALHA

- Bloqueie a cabine nos aparelhos para-quedas.
- Pressione o botão de emergência manual.
- Verifique se a haste carregada apenas com o peso da polia e os cabos não desce. Se for o caso, aperte o parafuso nº 3 até bloqueá-lo.
- Desbloqueie a cabine com o comando de subida.
- Verifique se a cabine livre para descer desce regularmente a uma velocidade reduzida quando se pressiona o botão de emergência manual.

5.10.3 PROCEDIMENTO DE ENGATE DA BOMBA DE MÃO

O procedimento a seguir permite eliminar o ar dentro da bomba manual. Para o engate, acione repetidamente a alavanca da bomba, cuja posição é mostrada nas figuras de acordo com o tipo de equipamento. Se houver dificuldades para engatar a bomba de mão, feche a torneira principal e aperte o parafuso indicado na Fig. 16 e Fig. 17 com a chave Allen CH5 de ação por alavanca da bomba de mão até que o óleo saia pelo assento do parafuso. Neste ponto, aperte o parafuso.

Fig. 14 – Para equipamentos sem válvula HDU ou com HDU stand alone

Fig. 15 – Equipamentos com válvula HDU integrada

Fig. 16 – Equipamentos sem válvula HDU ou com HDU stand alone

Fig. 17 – Equipamentos com válvula HDU integrada

5.11 MANUTENÇÃO DO EQUIPAMENTO

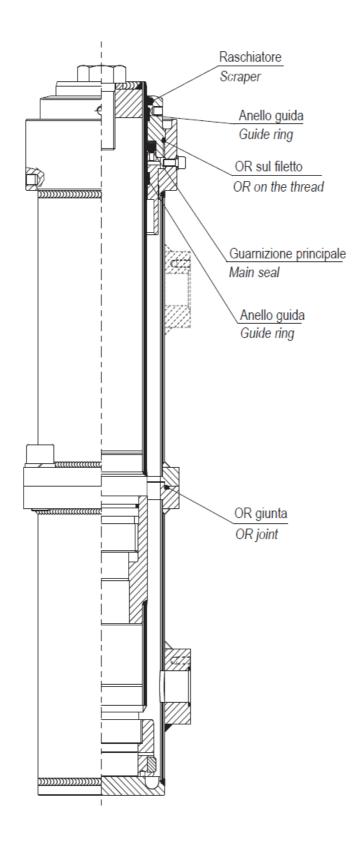
5.11.1 INFORMAÇÕES GERAIS

Em geral, os componentes hidráulicos não estão sujeitos a fortes desgastes, são seguros e exigem pouca manutenção. Para obter esses resultados, os componentes devem ser escolhidos e dimensionados corretamente com base nas características do equipamento e o óleo hidráulico deve ser adequado para a temperatura ambiente e as condições de tráfico do próprio equipamento.

- É, de todo modo, necessário realizar nos prazos previstos as operações de verificação e manutenção indicadas na ficha de manutenção periódica e eliminar imediatamente todos os eventuais defeitos encontrados. (Tab. 1).
- Se forem encontradas anomalias ou defeitos em partes que possam comprometer a segurança das pessoas ou do equipamento, é necessário retirar o equipamento de uso até a completa reparação ou substituição dessas partes.

ODEDA CÕES DE MANUITENCÃO DEDIÓDICA	ITENS DE REFERÊNCIA DO MANUAL DE INSTRUÇÕES D840			
OPERAÇÕES DE MANUTENÇÃO PERIÓDICA	PARA AS MANUTENÇÕES RECOMENDADAS			
RECOMENDADA	AO FIM DA	A CADA 2-	A CADA	A CADA 5-10
	INSTALAÇÃO	3 MESES	ANO	ANOS
VERIFICAÇÃO DA RETENÇÃO DAS VEDAÇÕES DO	10.2.2	10.2.2		10.2.2
CILINDRO	10.2.2	10.2.2		10.3
VERIFICAÇÃO DA RETENÇÃO DAS VEDAÇÕES DA	40.2.2		10 2 2	10.2.2
VÁLVULA	10.2.3		10.2.3	10.2.3
VERIFICAÇÃO DA RETENÇÃO DAS TUBULAÇÕES	10.2.1		10.2.1	
VERIFICAÇÃO DO NÍVEL DE ÓLEO E SEU ESTADO DE	6.1	6.1	10.6	10.6
CONSERVAÇÃO	0.1	6.1	10.6	10.6
LIMPEZA DO FILTRO DE TORNEIRA E DOS FILTROS DA	40.5		40.5	
VÁLVULA	10.5		10.5	
VERIFICAÇÃO DA CALIBRAÇÃO DA PRESSÃO A DUAS	6.2		6.2	
VEZES A PRESSÃO ESTÁTICA MÁX	6.5		6.6	
VERIFICAÇÃO DO FUNCIONAMENTO DA VÁLVULA DE	7.0	7.0		
BLOQUEIO	7.3	7.3		
VERIFICAÇÃO DA CONTRAPRESSÃO DE	6.7		6.7	
AFROUXAMENTO DOS CABOS	8.2.7		8.2.7	
VERIFICAÇÃO DO SISTEMA ANTIDERIVA (REPESCAGEM)	10.7	10.7		
VERIFICAÇÃO DA EMERGÊNCIA MANUAL E DA BATERIA	10.8		10.8	
VERIFICAÇÃO DO TEMPO DE ALIMENTAÇÃO DO	6.9		6.9	
MOTOR	0.5		0.5	
PLACAS – ESQUEMAS – INSTRUÇÕES	10.9		10.9	
REVISÃO COMPLETA				xxxx

5.11.2 SUBSTITUIÇÃO DAS VEDAÇÕES DO CILINDRO DE UM ESTÁGIO


As vedações do cilindro normal se encontram na cabeça do pistão. A troca das vedações prevê a substituição dos três elementos de retenção (apesar de, na maior parte dos casos, ser suficiente substituir somente a vedação principal):

- A vedação principal na haste;
- O O-ring de retenção na rosca da união;
- O raspador da haste.

A união que sustenta as vedações é rosqueada. Para facilitar o desrosqueamento da união, na sua circunferência há quatro furos cegos rosqueados M10. É possível soltar a união inserindo quatro parafusos nos quatro furos ou utilizando chaves de setor adequadas, encontradas no comércio. Antes de fazer a substituição das vedações, é necessário verificar a superfície da haste e eliminar eventuais irregularidades, como riscos ou amassados, que possam danificar as novas vedações:

- Ponha a cabine no alto em extra-curso e o cilindro no alto até o fim.
- Posicione-se com extrema prudência ao lado da cabeça e, se necessário, amarre-se com uma corda para trabalhar livremente e em segurança.
- Verifique a superfície da haste a cada meio metro por todo o seu comprimento, executando uma descida lenta em emergência manual.
- Elimine com uma lixa fina qualquer irregularidade encontrada visualmente ou com os dedos.
- Após a verificação do último meio metro de haste, proceda às operações para a substituição das vedações:
- Bloqueie a cabine com travas na posição mais cômoda. Para os equipamentos indiretos, bloqueie também com uma trava o suporte que sustenta a polia.
- Desconecte a haste da arcada, para os equipamentos diretos, ou a polia, para os equipamentos indiretos.
- Limpe a cabeça do cilindro, solte completamente o parafuso nº 3 da contrapressão e faça a haste entrar com a manobra manual até que o manômetro marque uma pressão zero.
- Solte a união rosqueada porta-vedações.
- Retire a vedação velha, o O-ring na rosca e o raspador.
- Verifique e limpe os anéis de guia recolocando-os no lugar correto.
- Limpe e verifique os assentos, remonte as novas vedações, prestando atenção para não danificá-las, e recoloque-as no mesmo sentido das velhas.
- Aperte a união com as novas vedações, faça o expurgo do ar e recoloque o equipamento em funcionamento.

5.11.3 SUBSTITUIÇÃO DAS VEDAÇÕES DOS CILINDROS TELESCÓPICOS

Nos cilindros telescópicos sincronizados, o óleo da unidade de controle atua somente no pistão da haste maior. As outras hastes se movem graças ao óleo contido nas câmaras internas do cilindro, que não se comunicam com a unidade de controle. Os volumes internos das câmaras permitem que as hastes superiores realizem todo o seu curso. Para funcionar corretamente, as câmaras internas do cilindro telescópico devem ser enchidas com óleo e manter-se desse modo. O óleo vazado das câmaras internas durante o funcionamento faz com que o cilindro perca seu sincronismo. As vedações do cilindro têm, portanto, um papel muito importante, e deve-se dar a máxima atenção à boa conservação das hastes e à limpeza do óleo.

- No cilindro telescópico, cada cabeça tem seu conjunto de vedações, para impedir vazamentos de óleo para o exterior.
- O pistão da haste menor se imerge e não tem vedações.
- Os pistões das hastes maiores (um para telescópicos de dois estágios, dois para telescópicos de três estágios) têm uma vedação cada um, para impedir a passagem de óleo entre as câmaras internas.
- Além da vedação de retenção, os pistões das hastes grandes têm também uma pequena válvula normalmente fechada, que se abre somente quando o cilindro está completamente fechado sobre si mesmo, para permitir o enchimento das câmaras internas.

A. SUBSTITUIÇÃO DAS VEDAÇÕES DOS CILINDROS TELESCÓPICOS DE DOIS ESTÁGIOS (CT-2)

Nos cilindros telescópicos de dois estágios (ver Fig. 18), as vedações a serem substituídas são:

- 1 vedação interna, no pistão da haste nº 2
- 1 conjunto de vedações da cabeça nº 1
- 1 conjunto de vedações da cabeça nº 2

Para a substituição de todas as vedações, incluindo a do pistão, é necessário ter à disposição:

- 1 talha para retirar as hastes da camisa (A capacidade da talha deve ser pelo menos igual ao peso da haste mais pesada.)
- 1 ou mais recipientes para a coleta do óleo.
- 1 bomba de aspiração para retirar o óleo do cilindro.

Procedimento:

- a) Bloqueie a cabine com travas na posição mais adequada: no alto, no caso de cilindro direto central, ou embaixo da cabeça do cilindro, no caso de direto lateral.
- b) Retire os quatro parafusos que bloqueiam a chapa superior "A" à arcada, retire os eventuais braços de guia e fixe sob a cabeça "C" a ferramenta (parafusador ou gravata) que será utilizado para manter a haste parada quando sua cabeça for desrosqueada.
- c) Limpe as cabeças e faça as hastes entrarem completamente com a manobra manual, soltando também o parafuso nº 3, de modo a colocar a pressão em zero.
- d) Solte o parafuso "B" da articulação e retire a chapa "A".
- e) Solte a cabeça "C", retirando-a então da haste.
- f) Recoloque a chapa superior "A" para poder retirar a haste nº 1 e apoie-a verticalmente no vão, com cuidado para não danificá-lo.
- g) Retire o tubo de recuperação de óleo, solte a cabeça "D" e retire-a da haste.

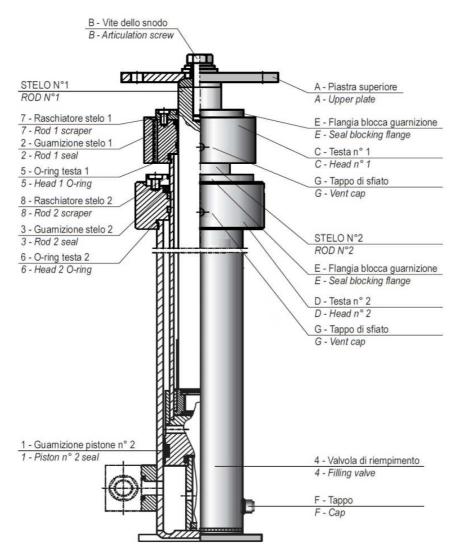


Fig. 18 Detalhe do cilindro telescópico CT-2

- h) Antes de extrair a haste nº 2, é necessário abrir o circuito hidráulico, de modo a permitir a entrada do ar durante o içamento da haste. Em caso de equipamento com cilindro direto central, pode-se soltar a conexão no filtro de torneira, enquanto, no caso de equipamento com cilindro direto lateral, pode-se abrir a tampa "F" do cilindro. O eventual óleo disperso nesta operação deve ser prontamente recuperado.
- i) Reaperte a cabeça "C" para poder prender a haste nº 2 e extraia-a lentamente para evitar a saída de óleo, que, nesse meio-tempo, será aspirado com a bomba de aspiração.
- j) Substitua a vedação "1" no pistão da 2ª haste, respeitando exatamente as posições dos vários elementos conforme a vedação original. A substituição do O-ring da válvula de enchimento apresenta dificuldades, mas, sendo esta uma vedação estática, ela não exige substituição.
- k) Verifique atentamente toda a superfície das duas hastes, eliminando cada eventual amassado ou risco com uma lixa fina.
- Remonte a haste nº 2 na camisa, prestando a máxima atenção para não danificar a vedação.
- m) Substitua a vedação, o raspador e o O-ring da cabeça 2, retirando o flange da vedação "E". Remonte a cabeça nº 2.
- n) Remonte a haste nº 1 inserindo-a na haste nº 2.
- o) Substitua a vedação, o raspador e o O-ring da cabeça nº 1, retirando o flange de bloqueio da vedação "E". Remonte a cabeca nº 1.
- p) Remonte a chapa "A" e fixe-a com o parafuso "B" e seus componentes.
- q) Feche novamente o circuito hidráulico, recolocando a tampa "F" ou reapertando a conexão do filtro de torneira, retire o parafusador e feche totalmente o cilindro sobre si mesmo.

- Faça o enchimento e o expurgo do ar do cilindro, lentamente a baixa velocidade, retirando as tampas de expurgo "G"
 das duas cabeças. Só feche os expurgos quando o óleo sair puro e sem ar.
- s) Remonte os eventuais braços de guia e faça o cilindro subir até se apoiar na cabine, que poderá, então, ser reconectada à chapa "A" com seus quatro parafusos.
- t) Após o primeiro curso, verifique o sincronismo e, se necessário, refaça o enchimento e o sincronização.

B. SUBSTITUIÇÃO DAS VEDAÇÕES DOS TELESCÓPICOS DE TRÊS ESTÁGIOS CT-3

Nos cilindros telescópicos de três estágios (ver Fig. 19), as vedações a serem substituídas são:

- 1 vedação interna, no pistão da haste nº 2
- 1 vedação interna, no pistão da haste nº 3
- 1 conjunto de vedações da cabeça nº 1
- 1 conjunto de vedações da cabeça nº 2
- 1 conjunto de vedações da cabeça nº 3

Para substituir todas as vedações, é necessário dispor das mesmas ferramentas para o cilindro telescópico de dois estágios.

Procedimento:

- a) Bloqueie a cabine com travas na posição mais cômoda: no alto, no caso de equipamentos com cilindro direto central, ou embaixo da cabeça do cilindro, no caso de equipamentos com cilindro direto lateral.
- b) Retire os quatro parafusos que bloqueiam a chapa superior "A" à arcada, retire os eventuais braços de guia e fixe sob as cabeças "C" e "D" as ferramentas (parafusadores ou gravatas) que serão utilizadas para manter as hastes paradas quando as cabeças forem desrosqueadas.
- c) Limpe as cabeças e faça as hastes entrarem completamente com a manobra manual, soltando também o parafuso nº 3, de modo a colocar a pressão em zero.
- d) Solte o parafuso "B" da articulação e retire a chapa "A".
- e) Solte a cabeça "C" retirando-a então da haste.
- f) Recoloque a chapa superior "A" para poder retirar a haste nº 1 e apoie-a verticalmente no vão, com cuidado para não danificá-lo.
- g) Solte a cabeça "D" (verificando antes se os dois parafusos "H" foram afrouxados) e retire-a da 2ª haste.
- h) Antes de proceder com a extração das outras duas hastes, abra o circuito hidráulico para permitir a entrada de ar durante o içamento das próprias hastes. Em caso de equipamento com cilindro direto central, pode-se soltar a conexão no filtro de torneira, enquanto, no caso de equipamento com cilindro direto lateral, pode-se abrir a tampa "F" do cilindro. O eventual óleo disperso deve ser prontamente recuperado.
- i) Reaperte a cabeça "C" para poder prender a haste nº 2 e extraia-a lentamente para evitar a saída de óleo, que, nesse meio-tempo, será aspirado com a bomba de aspiração. Apoie também esta haste na vertical no vão, com o cuidado de não danificá-lo e de protegê-lo adequadamente.
- j) Retire o tubo de recuperação do óleo, solte a cabeça "E" e retire-a da 3ª haste (verifique antes se os dois parafusos "H" de bloqueio foram afrouxados).
- k) Reaperte a cabeça "D" para poder prender a haste nº 3 e extraia-a lentamente para evitar a saída de óleo, que, nesse meio-tempo, será aspirado com a bomba de aspiração.

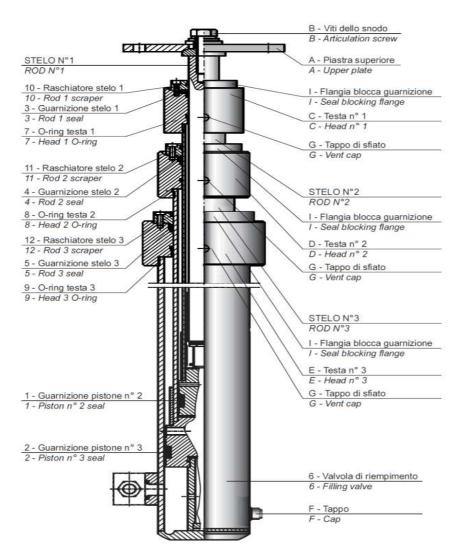


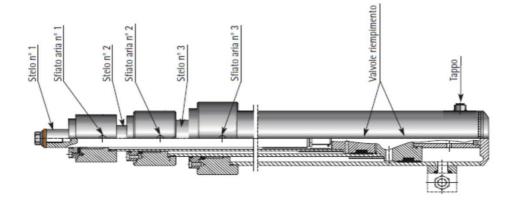
Fig. 19 Detalhes do cilindro telescópico CT-3

- Substitua a vedação "2" no pistão da 3ª haste, respeitando exatamente as posições dos vários elementos conforme a vedação original. A substituição dos O-rings das válvulas de enchimento tanto desta haste quanto da próxima apresenta dificuldades, mas, sendo uma vedação estática, a substituição não é necessária.
- m) Verifique atentamente toda a superfície da haste 3, eliminando qualquer eventual amassado ou risco com uma lixa fina.
- n) Remonte a haste nº 3 na camisa, prestando a máxima atenção para não danificar a vedação.
- o) Substitua a vedação, o raspador e o O-ring da cabeça nº 3, retirando o flange de bloqueio da vedação "I". Remonte a cabeça nº 3.
- p) Substitua a vedação "1" no pistão da haste nº 2, respeitando exatamente as posições dos vários elementos conforme na vedação original.
- q) Verifique atentamente toda a superfície da haste 2, eliminando qualquer eventual amassado ou risco com uma lixa fina.
- r) Remonte a haste nº 2 na camisa, prestando atenção para não danificar a vedação.
- s) Substitua a vedação, o raspador e o O-ring da cabeça nº 2, retirando o flange de bloqueio da vedação "I". Remonte a cabeca nº 2.
- t) Verifique atentamente toda a superfície da haste 1, eliminando qualquer eventual amassado ou risco com uma lixa fina.
- u) Remonte a haste nº 1 inserindo-a na haste nº 2.

- v) Substitua a vedação, o raspador e o O-ring da cabeça nº 1, retirando o flange de bloqueio da vedação "I". Remonte a cabeça nº 1.
- w) Remonte a chapa "A" e fixe-a com o parafuso B e seus componentes.
- x) Feche o circuito hidráulico, recolocando a tampa "F" ou reapertando a conexão do filtro de torneira, retire os parafusadores e feche totalmente o cilindro sobre si mesmo, para fazer o enchimento e o expurgo do ar.
- y) Faça o enchimento e o expurgo do ar do cilindro muito lentamente a baixa velocidade, retirando as tampas de expurgo "G" das três cabeças. Só feche os expurgos quando o óleo sair puro e sem ar.
- z) Remonte os eventuais braços de guia e faça o cilindro subir até se apoiar na cabine, que poderá, então, ser reconectada à chapa "A" com seus quatro parafusos. Após o primeiro curso, verifique o sincronismo e, se necessário, refaça o enchimento e o sincronização.

5.11.4 SINCRONIZAÇÃO DOS CILINDROS TELESCÓPICOS

Os cilindros telescópicos OMARLIFT são de sincronização hidráulica e, portanto, é necessário encher e manter cheias suas câmaras internas para se obter um movimento sincronizado de todos os estágios durante o curso e evitar contragolpes.


Quando o cilindro se fecha sobre si mesmo nos últimos 4-5 mm de curso para baixo, as válvulas de que as câmaras dispõem se abrem e permitem o enchimento das câmaras internas.

Portanto, para encher as câmaras internas ou restaurar o sincronismo do cilindro, se necessário, deve-se proceder da seguinte maneira:

- 1. Espere que o cilindro e o óleo das câmaras internas tenham esfriado a temperatura ambiente.
- 2. Retire os amortecedores sob a cabine e faça-a descer completamente até embaixo, verificando se os vários estágios do cilindro se encontram no fim de curso e se o peso da cabine esteja todo sobre o cilindro.

ATENÇÃO – PERIGO DE ESMAGAMENTO: lembre-se de que, na ausência de amortecedores, as distâncias de segurança no fosso e entre as eventuais guias não são respeitadas!

- 3. Abra todos os expurgos que se encontram na cabeça de cada estágio do cilindro
- 4. Desconecte a bobina EVR de alta velocidade da eletricidade, de modo que entre no cilindro apenas uma pequena quantidade de óleo.
- 5. Arranque o motor com a manobra de subida por 10-15 segundos e pare por 20-30 segundos, de modo que o ar tenha o tempo de sair. Repita esta operação várias vezes até que, do parafuso de expurgo, saia apenas óleo límpido sem ar.
- 6. Aperte os parafusos de expurgo do cilindro.
- 7. Caso a unidade de controle se encontre em um nível mais alto do que a cabeça do cilindro, faça também o expurgo do ar pelo parafuso correspondente localizado no filtro de torneira.
- Restaure o nível do óleo no reservatório, se necessário.
- 9. Reconecte a bobina da eletroválvula EVR.

5.11.5 SUBSTITUIÇÃO DAS VEDAÇÕES VBP DA VÁLVULA NL

A válvula VBP (válvula de não-retorno) deve manter fechada a linha principal quando a cabine está parada. A perfeita retenção é garantida por uma vedação inserida entre as duas partes que compõem seu pistão. Esta vedação sofre desgaste ao longo do tempo e pode ser danificada por partículas metálicas que a incidem e impedem sua retenção, porque se interpõem entre o assento e a vedação.

Para eliminar os vazamentos do VBP, é então necessário:

- a) Verificar se o pistão VBP desliza bem e, se necessário, remover a sujeira ou passar uma lixa fina.
- b) Verificar se, com a bobina desexcitada, a eletroválvula EVD fecha perfeitamente.

Substituir a vedação do VBP da seguinte maneira (ver Fig. 20):

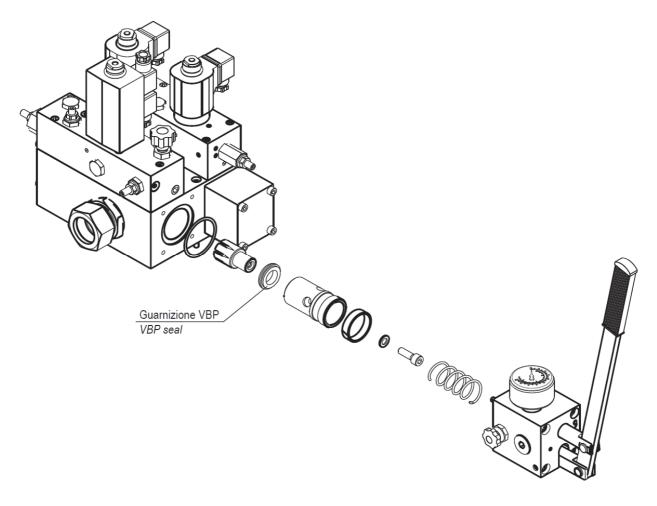


Fig. 20

- c) Fechar a torneira da linha principal.
- d) Soltar o parafuso nº 3 da contrapressão da haste e com, o botão de manobra manual, descarregar a pressão.
- e) Retirar a bomba de mão para aceder ao pistão VBP.
- f) Soltar o parafuso que mantém unidas as duas partes do pistão VBP e substituir a vedação que se encontra entre elas, prestando atenção para recolocá-la no sentido correto.
- g) Remontar tudo prestando atenção ao O-Ring entre a válvula e a bomba de mão.

6 HOMFLIFT

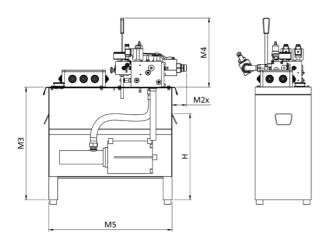
6.1 INFORMAÇÕES GERAIS

As unidades de controle HOMELIFT foram projetadas e fabricadas respeitando-se as Normas Europeias EN81-20/50, embora a aplicação típica para a qual os componentes hidráulicos HOMELIFT foram projetados é a para plataformas sob a Diretiva Máquinas, ou, de todo modo, para equipamentos de capacidades modestas, tanto no que diz respeito à massa quanto à vazão de óleo.

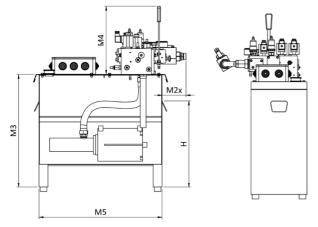
A unidade de controle pode ser fornecida em diferentes configurações: com válvula HC de uma ou duas velocidades, com motor monofásico ou trifásico de 50 ou 60 Hz, com motor interno ou externo, e tudo isso combinado com reservatórios de diferentes capacidades, para atender às exigências de curso útil.

É fornecida ainda com torneira de linha, com engate para tubos de 1/2" ou 3/4" dependendo da vazão, bomba de mão e filtro inspecionável segundo a norma EN81-20/50, como configuração de série ou opcional.

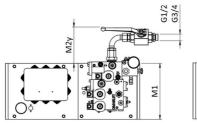
Além das versões normais de 1 e 2 velocidades, a partir de 2021, a válvula principal, da família HC, também está disponível em uma nova versão, denominada **válvula HC-HF** (Hi-Flux), renovada e otimizada na fluidodinâmica interna para melhorar ainda mais o desempenho, abatendo as perdas de carga e melhorando a resposta, com a vantagem de uma melhor estabilidade do desempenho do equipamento, de um menor aquecimento do óleo e de uma carga do motor e de uma absorção de corrente mais contidas em condições de exercício.

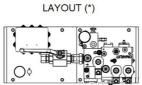

A unidade de controle e a válvula podem, portanto, ser utilizadas segundo a Diretiva Máquinas 2006/42/CE, ou podem ser combinadas com o dispositivo UCM contra movimentos descontrolados, para atender, por exemplo, aos requisitos das normas EN81-41 e EN81-20/50, realizado por meio de uma válvula HDU adicional certificada, que pode, por sua vez, ser utilizada em configuração redundante ou frenante.

Por fim, para as aplicações em que não há um local para as máquinas disponível, são oferecidas soluções específicas de armários dedicados com interface e combinação diretas, ou ainda uma versão MRL de alta capacidade a ser posta diretamente no fosso.


6.2 DIMENSÕES E MEDIDAS DAS UNIDADES DE CONTROLE HOMELIFT DE MOTOR IMERSO

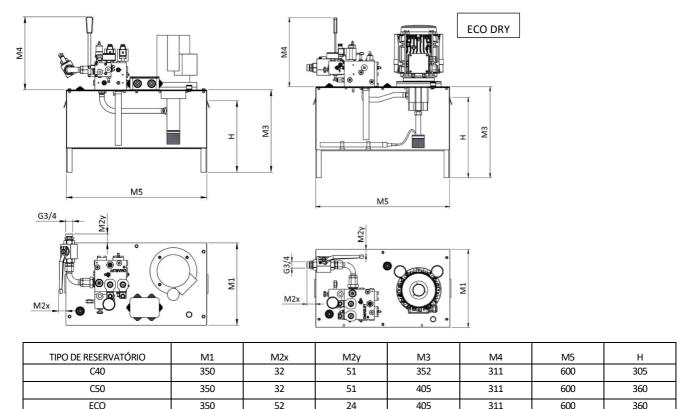
6.2.1 SEM VÁLVULA HDU



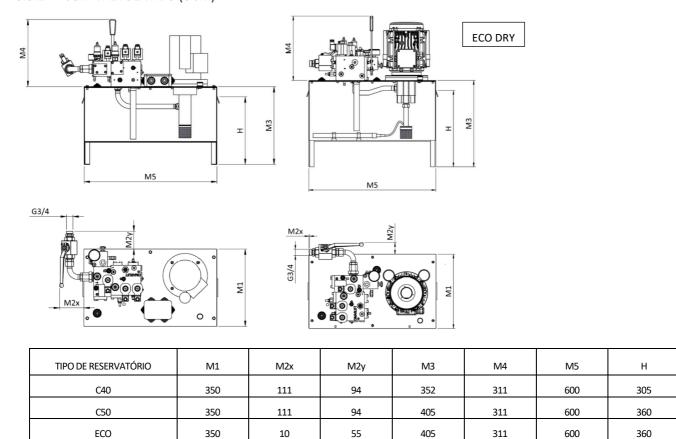

TIPO DE RESERVATÓ RIO	M1	M2 x	M2 y	M3	M4	M5	Н
40	300	98	46	330	311	500	-
50/S	250	78	83	500	311	550	-
60/S	300	105	55	525	311	600	420
90/S	300	72	55	702	311	540	627
110/S	300	72	55	702	311	700	640

6.2.2 COM VÁLVULA HDU (UCM)

TIPO DE RESERVATÓ RIO	M1	M2 x	M2 y	M3	M4	M5	Н
40	300	140	125	330	311	500	-
50/S	250	120	162	500	311	550	-
60/S (*)	300	0	0	525	311	600	420
90/S	300	114	134	702	311	540	627
110/S (*)	300	0	0	702	311	700	640



TIPO DE MOTOR 50 Hz 60 Hz NÍVEL DE RUÍDO DO 60 dB(A) 65 dB(A) HOMELIFT



6.3 DIMENSÕES E MEDIDAS DAS UNIDADES DE CONTROLE HOMELIFT DE MOTOR EXTERNO

6.3.1 SEM VÁLVULA HDU

6.3.2 COM VÁLVULA HDU (UCM)

NÍVEL DE RUÍDO: 62 dB(A) 50 Hz - 65 dB(A) 60 Hz

6.4 SELEÇÃO DO MOTOR BOMBA

6.4.1 HOMELIFT DE MOTOR IMERSO

Tipo														60/	s, 90	/S (*)	e 1 1	LO/S						50Hz
centralina			4	Ю e 5	50/S									(*)	e cce t	tto 4,	8kW	1AC						JUHZ
	12		16			2	3			30						3	5				4	5		Pompa [I/min]
	1,5	1,5	1,8	2,2	1,5	1,8	2,2	2,9	1,8	2,2	2,6	2,9	3,3	2,2	2,6	2,9	3,3	4,1	4,8	2,9	3,3	4,1	4,8	Motore [kW]
d Stolo	16	16	18	21	16	18	21	27	18	21	24	27	29	21	24	27	29	35	41	27	29	35	41	1AC 230V [A]
Ø Stelo	7,8	7,8	11	12	7,8	11	12	16	11	12	14	16	17	12	14	16	17	19	26	16	17	19	26	3AC 230V (Delta) [A]
[mm]	4,5	4,5	6,5	7	4,5	6,5	7	9,2	6,5	7	8	9,2	10	7	8	9,2	10	11	15	9,2	10	11	15	3AC 400V (Star) [A]
	55	42	50	55	25	34	43	55	21	28	34	42	48	23	29	35	41	48	55	25	30	39	48	P Statica Max [bar]
50	0,10		0,13			0,	19				0,24			0,28					0,36					
60	0,07		0,09			0,	13				0,17					0,	20				0,	25		
70	0,05		0,07			0,	09				0,12					0,	14				0,	19		
80	0,04		0,05			0,	07				0,09					0,	11				0,	14		
85	0,03		0,04			0,	06				0,08					0,	10				0,	13		
90	0,03		0,04			0,	06				0,07					0,	09				0,	11		Velocità stelo [m/s]
100	ı		-				-				0,06					0,	07				0,	09		
50/2	0,10		0,14			0,	20		0,26					0,	30				0,	39				
60/2	0,07		0,09			0,	13		0,18					0,	20			0,26						
77/2	0,04		0,06			0,	08		0,11			0,11 0,13 0,17			0,13									
58/3	0,08		0,10			0,	15			0,19					0,	22				0,	28			

Tipo												60/9	5, 90,	/S (*)	e 1 :	LO/S				60Hz
centralina			4	Ю е !	50/S							(*)	e cce t	tto 4,	8kW	1AC				бипи
	14,4		19,2			27	7,6				3	6					42			Pompa [l/min]
	1,5	1,5	1,8	2,2	1,5	1,8	2,2	2,9	2,2	2,6	2,9	3,3	4,1	4,8	2,6	2,9	3,3	4,1	4,8	Motore [kW]
Ø Stelo	18,5	19	20	23	19	20	23	29	23	27	29	34	35	45	27	29	34	35	45	1AC 230V [A]
	11	11	12	14	11	12	14	17	14	15	17	18	21	26	15	17	18	21	26	3AC 230V (Delta) [A]
[mm]	6,5	6,5	7	8	6,5	7	8	10	8	9	10	11	12	15	9	10	11	12	15	3AC 400V (Star) [A]
	49	33	43	55	20	27	34	50	22	27	34	39	47	55	23	28	33	41	51	P Statica Max [bar]
50	0,12		0,15			0,22			0,29 0,34											
60	0,08		0,11			0,	15		0,20 0,24											
70	0,06		0,08			0,	11		0,15 0,17											
80	0,05		0,06			0,	09				0,	11			0,13					
85	0,04		0,05			0,	08				0,	10			0,12					
90	0,04		0,05			0,	07				0,	09					0,10			Velocità stelo [m/s]
100	-		-				-				0,	07					0,08			
50/2	0,12		0,17			0,	24				0,	31					0,36			
60/2	0,08		0,11			0,	16			·	0,	22	·				0,24		·	
77/2	0,05		0,07			0,	10	•	0,13				0,16			•	·			
58/3	0,10		0,12			0,	18	•	0,23				•	0,26	•					

Os valores de corrente indicados são os nominais da placa do motor. Considerando-se a variabilidade das características de realização dos equipamentos, das condições operacionais de pressão e temperatura e das tolerâncias construtivas dos motores e bombas, as velocidades detectáveis em exercício podem diferir em até 15% com relação ao que é indicado na tabela.

6.4.2 HOMELIFT DE MOTOR EXTERNO

Motores de classe S3-10% com referência a um tempo de ciclo de 10 min

Tipo												50Hz
centralina												30112
	1	2		1	6			2	3		≥30	Pompa [l/min]
	1,5	1,8	1,5	1,8	2,2	2,9	1,5	1,8	2,2	2,9		Motore [kW]
	9,2	-	9	13	15	ı	9	13	15	17		1AC 230V [A]
Ø Stelo [mm]	6,2	-	6,2	7,6	10	-	6,2	7,6	10	13,2		3AC 230V (Delta) [A]
	3,6	-	3,6	4,4	5,8	ı	3,6	4,4	5,8	7,6	6.5	3AC 400V (Star) [A]
	55	-	41	51	55	-	28	35	42	55		Press. Statica Max [bar]
50	0,:	10		0,	13	-		0,	19		γ, ς	
60	0,0	07	0,09				0,19 0,13 0,09 0,07 0,06 0,06 0,06					
70	0,0	05		0,	07			0,	09		ECC	
80	0,0	04		0,	05			0,	07		otto	
85	0,0	03		0,	04			0,	06		rodi	Velocità stelo [m/s]
90	0,0	03		0,04				0,	06		di p	velocita stelo [III/s]
50/2	0,:	10		0,	14			0,	20		V O	
60/2	0,0	07		0,	09			0,	13			
77/2	0,0	04		0,	06	•		0,	80	·		
58/3	0,0	08		0,	10			0,	15			

Tipo												6011
centralina												60Hz
	14	,4		19	9,2			27	7,6		≥ 30	Pompa [I/min]
	1,5	1,8	1,5	1,8	2,2	2,9	1,5	1,8	2,2	2,9		Motore [kW]
	1	1	1	1	1	-	1	ı	-	-		1AC 230V [A]
Ø Stelo [mm]	6,2	7,6	6,2	7,6	11,4	12,8	6,2	7,6	11,4	12,8		3AC 230V (Delta) [A]
	3,6	4,4	3,6	4,4	6,6	7,4	3,6	4,4	6,6	7,4	6.5	3AC 400V (Star) [A]
	46	55	33	40	46	55	23	30	33	44		Press. Statica Max [bar]
50	0,:	12		0,	15			0,:	22		vedi prodotto ECODRY, cap.	
60	0,0	38		0,	11			0,	15		DOR	
70	0,0	06		0,	08			0,	11		ECC	
80	0,0	05		0,	06			0,0	09		otto	
85	0,0	04		0,	05			0,0	08		ode	Velocità stelo [m/s]
90	0,0	04		0,	05			0,0	07		di b	velocità stelo [III/s]
50/2	0,:	12		0,	17	•		0,	24	·	Ve	
60/2	0,0	38		0,	11			0,	16			
77/2	0,0	05	0,07				0,10					
58/3	0,:	10		0,	12			0,	18			

Os valores de corrente indicados são os nominais da placa do motor. Considerando-se a variabilidade das características de realização dos equipamentos, das condições operacionais de pressão e temperatura e das tolerâncias construtivas dos motores e bombas, as velocidades detectáveis em exercício podem diferir em até 15% com relação ao que é indicado na tabela.

6.4.3 CURSO MÁXIMO DA HASTE E QUANTIDADE DE ÓLEO NOS RESERVATÓRIOS

O curso máx. indicado se refere apenas à quantidade de óleo útil nos vários tipos de reservatório. O curso máx específico depende da haste adotada devido ao limite de instabilidade no pico de carga. Portanto, consulte os respectivos diagramas de segurança das hastes.

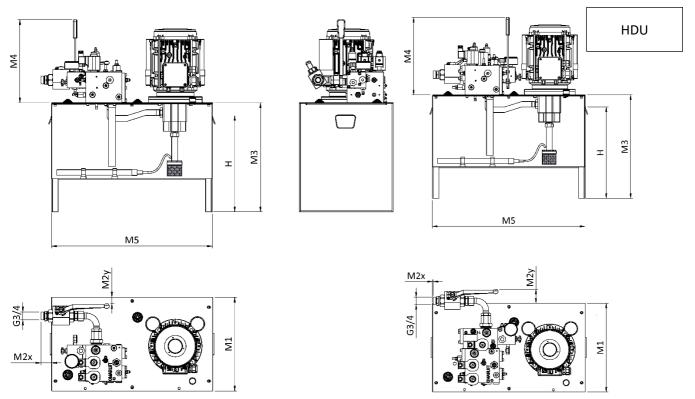
MOTOR IMERSO

Ø Haste [m	ım]	50	60	70	80	90	100	CT – 2 - 40	CT-2-50
	40	9	6	4,7	3,6	2,8	2,2	6,6	4,1
Curso máx da	50/S	11,5	8,2	6	4,6	3,6	2,9	6,3	5,3
haste [m]	60/S	17	12	8,8	6,7	5,3	4,3	12,5	7,9
	110/S	32,5	23	16,9	12,9	10,2	8,2	24	15

Tipo de reservatório	Capacidade do reservatório [I]	Nível mín de óleo [l]	Óleo útil [I]
40	39	21	18
50/S	43	20	23
60/S	65	31	34
90/S	77	26	51
110/S	100	35	65

MOTOR EXTERNO

Ø Haste [mn	n]	50 x 5	60	70	80	85	90	CT – 2 - 40
Curso máx da	C40	14,5	9,7	7,6	5,7	5,1	4,5	6,3
haste [m]	C50	20,5	14,5	10,6	8,2	7,2	6,4	15,9


Tipo de reservatório	Capacidade do reservatório [I]	Nível mín de óleo [l]	Óleo útil [l]
C40	44	15	29
C50	55	14	41

6.5 UNIDADES DE CONTROLE ECO DRY

As unidades de controle Eco Dry são projetadas e fabricadas para serem instaladas em plataformas, minimizando os consumos. São formadas por um reservatório de óleo com um motor externo e uma bomba de rotores helicoidais montada verticalmente, com o objetivo de reduzir ao mínimo a quantidade de óleo utilizada. Para as dimensões, consulte o item 6.3.

A unidade de controle não dispõe de uma caixa de cabeamento para as conexões elétricas (motor e termístor), que, no entanto, pode ser fornecida sob encomenda. A unidade de controle só pode ser fornecida com arranque direto, duas velocidades (2V) e com ou sem válvula HDU para a funcionalidade UCM.

		5	ОН	<u>'</u>			(50H	Z						
4	27	3	34	42		26,5	3	13	4	1	POMPA (I/min)				
Ø STELO [mm]	2,9	2,9	3,7	2,9	2,9 3,7		2,9	3,7	2,9	3,7	Motore [KW]				
	17A	17A	23A	17A	23A	18A	18A	24A	18A	24A	1AC 230V [A]				
	45	40	48	32	44	47	40	47	32	45	Max. press. statica [bar]				
50	0,229	0,2	289	0,3	359	0,223	0,2	274	0,3	47					
60	0,159	0,2	201	0,2	249	0,155	0,1	L91	0,241						
70	0,117	0,1	L48	0,1	.83	0,114	0,140		0,1	.77					
80	0,089	0,1	L13	0,1	.40	0,087	0,1	L07	0,1	.36					
85	0,079	0,1	L00	0,1	.24	0,077	0,0)95	0,1	.20	VELO 01741 6751 0 / / /)				
90	0,071	0,0	089	0,1	.11	0,069	0,0)85	0,1	.07	VELOCITA' STELO (m/s)				
100	0,057	0,0)72	0,0	0,090		0,090		0,090		0,0	0,069		187	
50/2	0,234	0,2	295	0,3	0,364		0,2	0,286 0,35		55					
60/2	0,162	0,2	204	0,252		0,159 0,198		0,2	146						
77/2	0,099	0,1	125	0,154		0,097	7 0,121		0,150						
58/3	0,171	0,2	215	0,2	,		0,168 0,209		0,260		!				

Os valores de corrente indicados são os nominais da placa do motor. Considerando-se a variabilidade das características de realização dos equipamentos, das condições operacionais de pressão e temperatura e das tolerâncias construtivas dos motores e bombas, as velocidades detectáveis em exercício podem diferir em até 15% com relação ao que é indicado na tabela.

6.5.1 DISPOSITIVOS PADRÃO

Na unidade de controle, estão inclusos:

- Válvula de pressão máxima;
- Válvula de emergência manual antiafrouxamento dos cabos na descida;
- Filtro inspecionável em aço inox;
- Filtro de torneira externo;
- Bomba manual de emergência;
- Haste para o nível de óleo;
- Pressostato regulável;
- Antivibratórios;
- Cabos de 1,2 m.

Opcional:

Verificação de segurança para a temperatura do óleo.
 É um contato bimetálico normalmente fechado, sensível às variações de temperatura do óleo.
 Restaura-se automaticamente quando a temperatura volta às condições padrão.
 O contato deve ser protegido contra o óleo, o pó e a umidade.

Características elétricas e mecânicas:

Tipo de contato	N.C.	Tensão máxima a 50-69 Hz	250 V
Temperatura de intervenção	70 ± 5 °C	Corrente nominal a cosφ =1	2,0 A
Temperatura de reinício	>55±5°C	Corrente nominal a cosφ =0,6	1,2 A
Temperatura máxima	175 °C	Corrente máxima a cosφ =1	4,0 A
Seção dos cabos	0,25 mm ²	Corrente de curto-circuito	6,3 A
Comprimento dos cabos	1,2 m	Resistência	< 40 mΩ

6.6 UNIDADES DE CONTROLE TPU

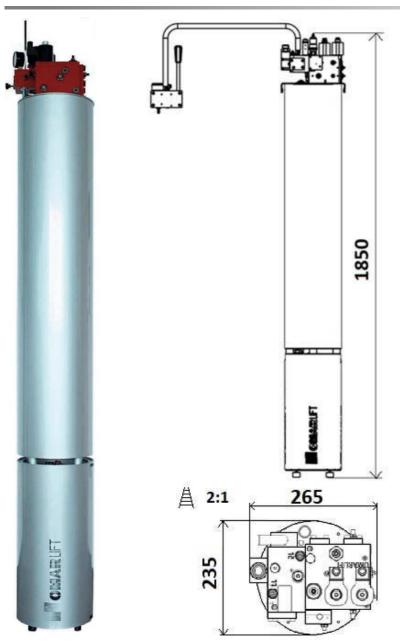
Para aplicações especiais, a OMARLIFT preparou unidades de controle altamente compactas e com conteúdo de design, capazes de uma ótima apresentação visual em qualquer lugar em que forem instaladas, de modo a permitir um posicionamento em vista, inclusive em ambientes muito frequentados.

Dotadas de uma elegante forma cilíndrica em duas partes, as unidades de controle TPU, acrônimo de Tower Power Unit, contam com uma estética refinada e elegante que se adapta bem a soluções de interior design minimalista, bem como de industrial design. As duas partes sobrepostas entre si parecem como se estivessem suspensas no ar, em virtude da posição oculta dos suportes antivibratórios de conjunção, solução particularmente evidente nas colorações escuras, e podem ser

desmontáveis para facilitar eventuais operações de manutenção e substituição do grupo da bomba.

A subdivisão visual responde ainda a requisitos funcionais, com as duas partes de exercem funções específicas diferentes: a parte inferior, de grupo de potência, e a outra parte, de reservatório, em cujo topo destaca-se a função de gestão do movimento e de segurança, garantida pela válvula tipo HC, também disponível sob encomenda com função UCM integrada.

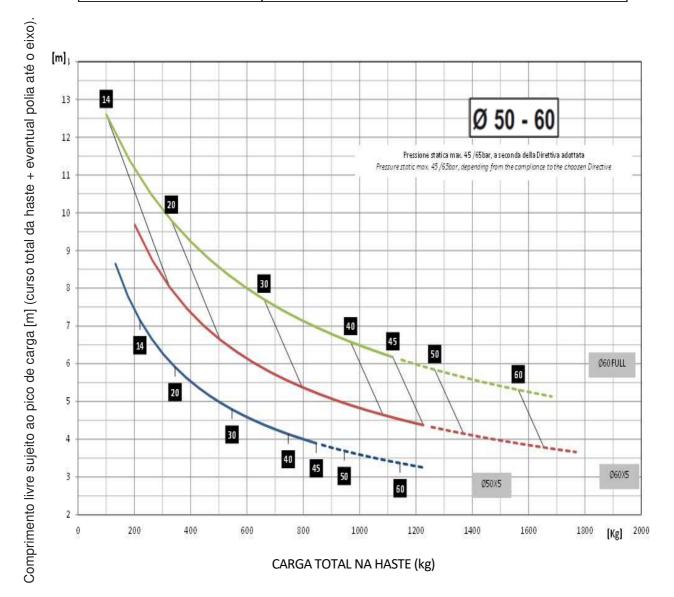
O resfriamento do grupo do motor da bomba em ar foi particularmente estudado para garantir classes de serviço em linha com as exigências de aplicação, superando o padrão S3-10%, e dois cárteres removíveis permitem um prático e fácil acesso às partes mecânicas e às conexões elétricas.


Além de inquestionáveis vantagens estéticas, a presença do cárter integral permite também a proteção contra contatos involuntários com partes quentes, requisito indispensável para que possa ser colocado em uma zona de passagem.

O desempenho obtido com TPU é totalmente comparável ao das unidades de controle Eco Dry, inclusive no que diz respeito ao nível de silêncio.

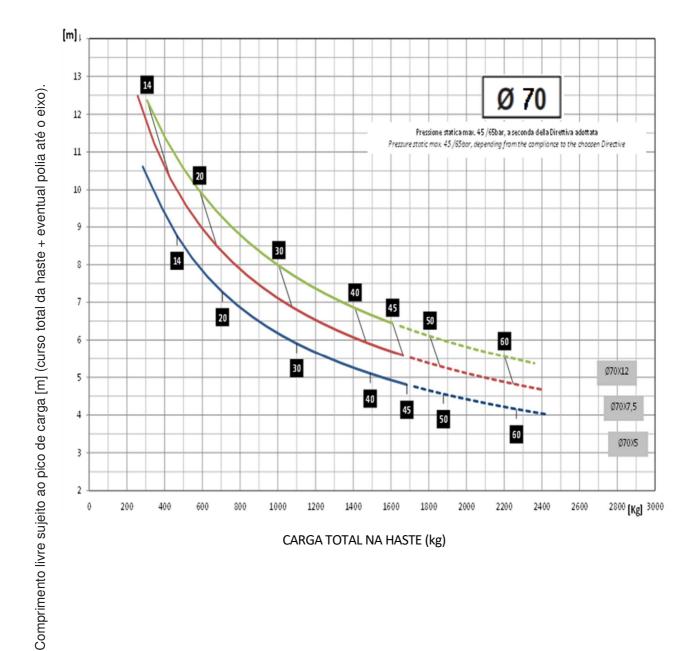
Várias soluções de cor e acabamento permitem ainda valorizar o aspecto estético, diferenciar as partes que compõem a TPU e adequar-se aos requisitos do Cliente para a pela inserção na definição e na caracterização do ambiente em que a unidade de controle TPU é posicionada, buscando tornar-se um elemento atraente da mobília.

Capacidade útil do reservatório: 37 litros


 $Motores\ externos\ 230\ V\ 1\ CA\ com\ classe\ de\ funcionamento\ intermitente\ S3-10\%\ em\ um\ tempo\ de\ ciclo\ de\ 10\ min\ Bomba\ de\ rotores\ helicoidais$

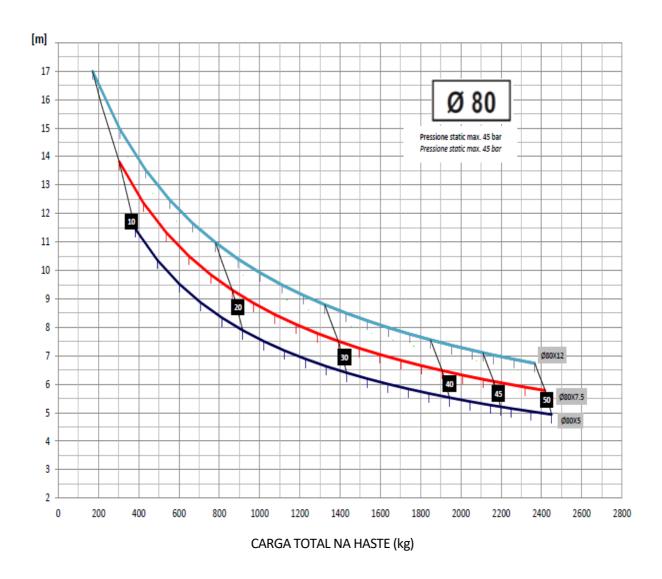
MOTOR EXTERNO	FREQ	BOMBA (I/min)	PRESS MÁX Ps (bar)
2,9 kW	50 Hz	16	50
2,9 kW	50 Hz	21,3	50
2,9 kW	50 Hz	26,7	50
2,9 kW	50 Hz	34,7	39
3,7 kW	50 Hz	34,7	50
2,9 kW	60 Hz	19,2	50
2,9 kW	60 Hz	25,6	50
2,9 kW	60 Hz	32	43
3,7 kW	60 Hz	32	50

6.7 DIAGRAMAS DE SEGURANÇA DAS HASTES EM PICO DE CARGA SEGUNDO AS NORMAS EN81-2 E EN81-20/50


Pressione statica (bar) 60 x 5 Ø stelo x spessore (mm) **LEGENDA** Ø rod x thickness (mm) Static pressure (bar)

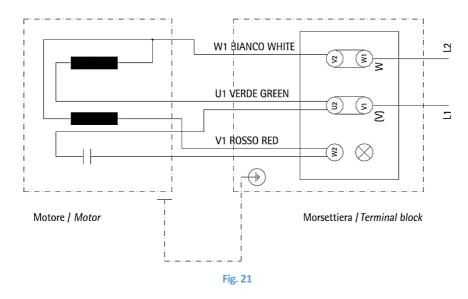
Os gráficos apresentam um valor indicativo: em caso de dúvida, consulte o cálculo analítico.

Pressione statica (bar) 60 x 5 Ø stelo x spessore (mm) **LEGENDA** Static pressure (bar) Ø rod x thickness (mm)

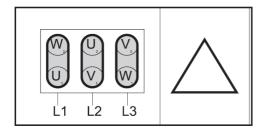


Os gráficos apresentam um valor indicativo: em caso de dúvida, consulte o cálculo analítico.

Pressione statica (bar) 60 x 5 Ø stelo x spessore (mm) **LEGENDA** Static pressure (bar) Ø rod x thickness (mm)



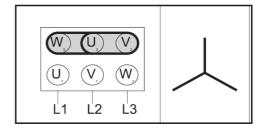
Os gráficos apresentam um valor indicativo: em caso de dúvida, consulte o cálculo analítico.

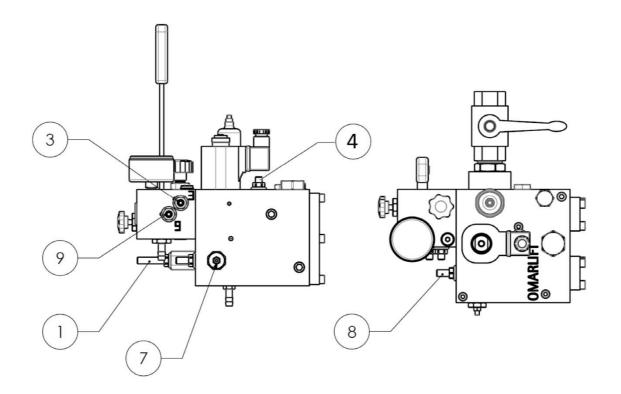

6.8 CONEXÃO ELÉTRICA DO MOTOR MONOFÁSICO

No motor monofásico, o condensador já está conectado à placa de terminais que se encontra dentro da caixa. Para a conexão correta do motor, é necessário seguir o esquema indicado pelo fabricante e o esquema apresentado na Fig. 21.

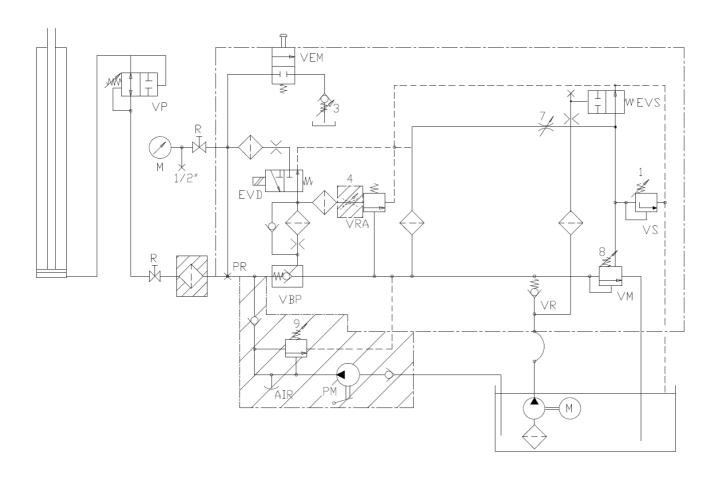
6.9 CONEXÃO DO MOTOR TRIFÁSICO

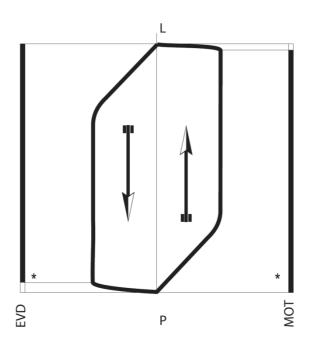
O motor trifásico dos equipamentos HOMELIFT é de baixa potência e geralmente é arrancado em modo direto. Dependendo do caso, a conexão do motor trifásico pode ser realizada em estrela ou em triângulo. A disposição das barras de conexão para os dois casos é indicada na Fig. 22.



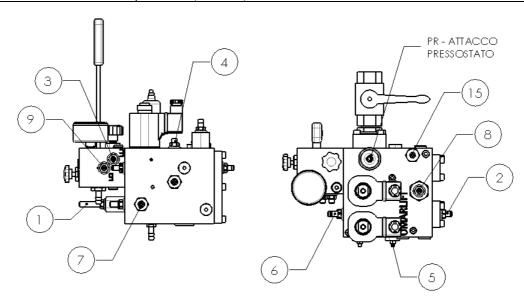

Fig. 22

ATENÇÃO: para obter mais informações sobre a instalação e a manutenção de um equipamento HOMELIFT, consulte o manual de instruções D843MITGB.


6.10 REGULAGEM DO HOMELIFT DE UMA VELOCIDADE (V1)


	TABELA DE REGULAGENS DA VÁLVULA HOMELIFT (VÁLVULA HC V1)										
PAR AFUS O	DESCRIÇÃO	REGULAGENS									
N° 1	Calibração da válvula de pressão máxima	Apertando, aumenta-se a pressão máxima de calibração Soltando, diminui-se a pressão máxima de calibração									
N° 3	Calibragem da contrapressão da haste e antidescarrilhamento dos cabos	Apertando, a haste não desce sozinha em emergência Sostando, a haste não desce sozinha em emergência									
N° 4	Teste de reação VP	Apertando completamente, a velocidade da cabine tende a superar a velocidade nominal									
N° 7	Pressurização do estrangulador e partida em subida	Apertando, atrasa-se a pressurização, com a consequente partida suave Soltando, a pressurização é imediata, com partida rápida									
N° 8	Regulador de velocidade de descida	Apertando, diminui-se a velocidade de descida Soltando, aumenta-se a velocidade de descida									
N° 9	Calibração da pressão da bomba de mão	Apertando, aumenta-se a pressão de calibragem da bomba de mão Soltando, diminui-se a pressão de calibragem da bomba de mão									

6.11 HOMELIFT DE 1 VELOCIDADE – ESQUEMA HIDRÁULICO E DE VELOCIDADE



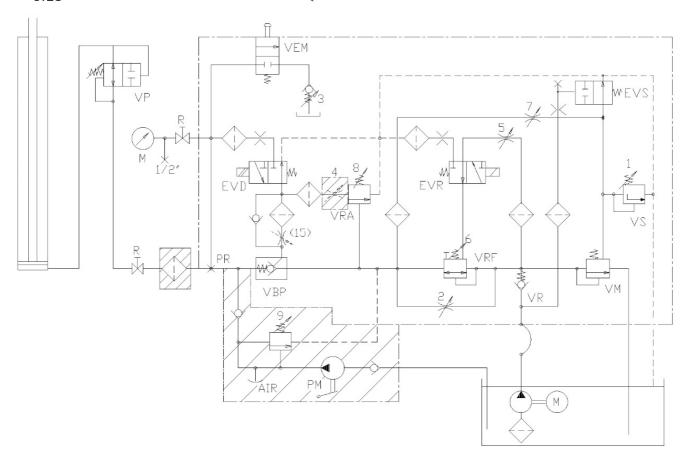

6.12 REGULAGEM DO HOMELIFT DE DUAS VELOCIDADES (V2)

	TABELA DE RE	GULAGENS DA VÁLVULA HOMELIFT (VÁLVULA HC V2)
PARA FUSO	DESCRIÇÃO	REGULAGENS
N° 1	Calibração da válvula de pressão máxima	Apertando, aumenta-se a pressão máxima de calibração Soltando, diminui-se a pressão máxima de calibração
N° 2	Regulação da baixa velocidade (subida e descida)	Apertando, aumenta-se a baixa velocidade Soltando, diminui-se a baixa velocidade
N° 3	Calibragem da contrapressão e antidescarrilhamento dos cabos	Apertando, a haste não desce sozinha em emergência Soltando, a haste desce sozinha em emergência
N° 4	Teste de reação VP	Apertando completamente, a velocidade da cabine tende a superar a velocidade nominal
N° 5	Estrangulador de desaceleração de alta para baixa velocidade (subida e descida)	Apertando, freia-se mais lentamente Soltando, freia-se mais rapidamente
N° 6	Limitador da velocidade de subida	Apertando, reduz-se a velocidade na subida Soltando, aumenta-se a velocidade na subida até a máxima capacidade da bomba
N° 7	Pressurização do estrangulador e partida em subida	Apertando, atrasa-se a pressurização, com a consequente partida suave Soltando, a pressurização é imediata, com partida rápida
N°8	Regulador de velocidade de descida	Apertando, aumenta-se a velocidade de descida Soltando, diminui-se a velocidade de descida
N° 9	Calibração da pressão da bomba de mão	Apertando, aumenta-se a pressão de calibragem da bomba de mão Soltando, diminui-se a pressão de calibragem da bomba de mão
N° 15	Calibração da partida em descida	Apertando, partida suave Soltando, partida rápida

6.13 HOMELIFT DE 2 VELOCIDADES – ESQUEMA HIDRÁULICO E DE VELOCIDADE

LEGENDA

VR = Válvula de retenção.

VM = Válvula de máxima pressão.

VS = Válvula de segurança.

VRF = Válvula de regulagem de fluxo.

VRA = Válvula de balanceamento de descida.

VBP = Válvula de bloqueio pilotada.

EVD = Eletroválvula de descida.

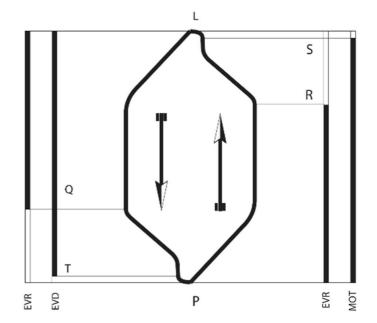
EVR = Eletroválvula do regulador de fluxo.

EVS = Válvula de subida. VEM = Emergência manual.

VP = Válvula de bloqueio (paraquedas).

FR = Filtro de torneira.

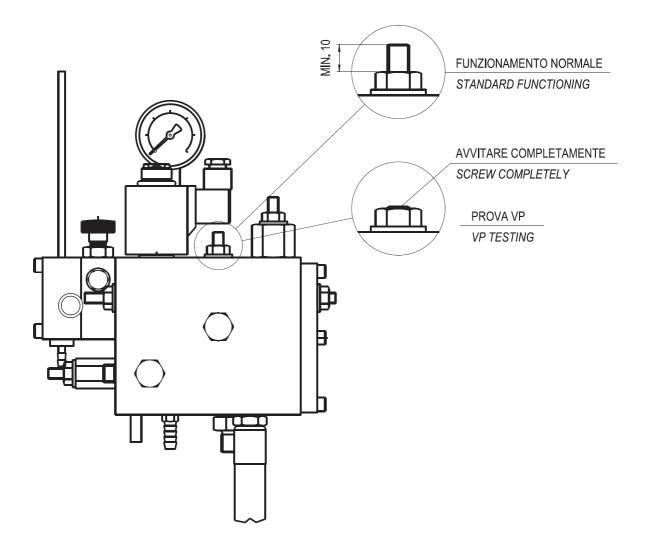
M = Manômetro.


PM = Bomba de mão.

PR = Engate do pressostato

R = Torneira e engate 1/2" Gas para

para manômetro de controle.


1, 2... = Número dos parafusos de regulação

6.14 DISPOSITIVO PARAFUSO N° 4 – TESTE DA VÁLVULA VP

O grupo da válvula da unidade de controle HOMELIFT dispõe do dispositivo parafuso nº 4. Esse dispositivo permite testar a intervenção da válvula paraquedas. De fato, apertando completamente o parafuso nº 4, a cabine tenderá a superar a velocidade nominal sem que o grupo de válvulas possa controlá-la, provocando, assim, a intervenção da válvula paraquedas.

ATENÇÃO: Após o teste da válvula paraquedas, recoloque o parafuso na posição de funcionamento normal conforme indicado na figura, para garantir um funcionamento correto do equipamento

6.15 EMBALAGEM PARA HOMELIFT

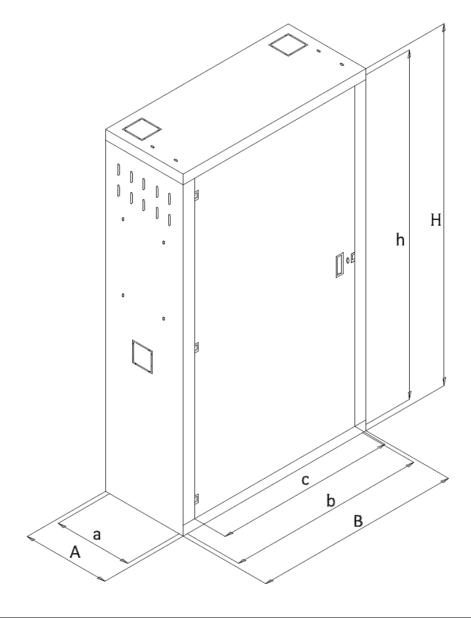
As unidades de controle HOMELIFT contam com um reservatório projetado para facilitar a movimentação com empilhadeira; além disso, não é necessário usar pallets para a embalagem.

A OMARLIFT fornece as unidades de controle HOMELIFT com embalagem padrão formada por uma proteção em papelão no grupo de válvulas e a caixa elétrica, e por um filme de plástico termorretrátil. Este tipo de embalagem é gratuito e utilizado sempre, salvo se solicitado em contrário pelo cliente. De fato, são opcionais as embalagens múltiplas em um único pallet e as gaiolas de madeira, ambas mostradas nas figuras abaixo. Para obter informações detalhadas e orçamentos para essas embalagens, consulte o Departamento Comercial da OMARLIFT.

Fig. 23 – Embalagem padrão

Fig. 24 – Embalagem com tubo flex

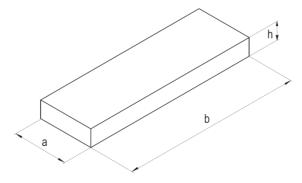
Fig. 25 – Embalagem múltipla com pallet


Dimensões da embalagem com EURO pallet									
Comprimento Profundidade h									
1200 mm	800 mm	900 mm							

6.16 ARMÁRIO PARA HOMELIFT MRL

A OMARLIFT propõe também um modelo de armário para sala de máquinas para unidades de controle HOMELIFT. Vem com uma porta com fechadura e abertura reversível, em chapa pintada RAL 7032, luz interna, parafusos, embalagem padrão e instruções de montagem.

Para solicitações como prazos de entrega e armários especiais, entre em contato com o Departamento Comercial da OMARLIFT.



CÓDIGO	DIMEN	ISÕES EXT (mm)	ERNAS	DIMEN	ISÕES INT (mm)	TERNAS	AC	ESSO	OBS.
332.00	Α	В	Н	а	b	h	С	nº	
8H203099	410	730	1550	360	710	1530	670	1 porta	SEM HDU
8H202437	520	800	1550	470	780	1530	740	2 portas	HDU

6.17 EMBALAGENS PARA ARMÁRIO HOMELIFT

Os armários para HOMELIFT são fornecidos com embalagem padrão em papelão. A pedido específico do cliente, é possível fornecer vários armários sobrepostos em um pallet ou um único armário em um pallet. Para solicitações especiais, entre em contato com o Departamento Comercial da OMARLIFT.

Imballo standard per Armadio Standard package for Cabinet

Dimensões da embalagem									
а	b	h							
740 mm	1600 mm	120 mm							

Dimensões da embalagem sujeitas a variações

Imballo armadio minilift Minilift cabinet package

CILINDROS TELESCÓPICOS SINCRONIZADOS

7.1 INFORMAÇÕES GERAIS

A OMARLIFT apresentou em 2020 uma nova gama de cilindros telescópicos sincronizados, constituída por cilindros de efeito simples, produzidos na Itália nas versões de dois estágios e três estágios. Ambas as versões estão disponíveis para aplicações como diretos laterais ou como diretos centrais. Seu comprimento muito reduzido com relação ao curso permite sua aplicação em locais com espaços restritos ou onde não é possível fazer buracos muito profundos no terreno ou nos espaços sob o elevador. A sincronização dos cilindros telescópicos OMARLIFT é de tipo hidráulico com câmaras internas. No funcionamento normal do equipamento, o óleo da unidade de controle está em comunicação apenas com o estágio maior, enquanto os estágios menores se movem graças ao óleo contido nas câmaras internas, que devem ser previamente enchidas. O óleo das câmaras internas pode passar de uma câmara fechada à do pistão seguinte por meio dos furos, mas não pode passar de uma câmara superior à inferior. Somente com o cilindro completamente fechado em si mesmo, as válvulas de não-retorno localizadas nos fundos dos estágios se abrem mecanicamente e permitem o enchimento das câmaras internas. Somente quando as câmaras internas do cilindro telescópico estão completamente cheias, o movimento de todos os estágios é contemporâneo e o cilindro está sincronizado por todo o seu curso.

Para realizar corretamente a instalação, o enchimento e a sincronização dos cilindros telescópicos, consulte o "Manual de Instruções" D840M. Nos cilindros telescópicos, podem-se de todo modo verificar pequenos desfaseamentos das hastes devido não só aos vazamentos ou perdas de óleo, mas também às diferentes pressões internas e às diferentes temperaturas do óleo nas câmaras. Esses desfaseamentos são recuperados normalmente por meio de uma repartição correta dos extra-cursos, que recomenda-se não serem inferiores aos valores sugeridos:

ATENÇÃO: siga absolutamente os valores de extra-curso abaixo para um funcionamento correto do cilindro e o restauro da sincronização:

- CILINDRO DE DOIS ESTÁGIOS (CT2): Extra-curso total de 250 mm no mínimo, dos quais 100 mm embaixo e 150 mm no alto.
- CILINDRO DE TRÊS ESTÁGIOS (CT3): Extra-curso total de 350 mm no mínimo, dos quais 100 mm embaixo e 250 mm

A inobservância da distribuição correta dos extra-cursos ou o não enchimento e não sincronização do cilindro podem comprometer, no todo ou em parte, o funcionamento do equipamento.

Para o procedimento de sincronização, consulte o item 5.11.4.

7.2 SELEÇÃO DO CILINDRO TELESCÓPICO E DA UNIDADE DE CONTROLE

A seleção do cilindro telescópico é realizada por meio dos gráficos de segurança apresentados a seguir e exige sempre a verificação por meio do cálculo analítico. Para cada cilindro, os gráficos dão o limite máximo do curso total com base na carga total no topo do próprio cilindro e no número de guias que se pretende colocar nas cabeças dos vários estágios para aumentar a estabilidade.

Os gráficos NÃO incluem o peso dos eventuais braços de guia, cujo valor deve ser adicionado na estimativa do peso total no cilindro.

Em caso de seleção do cilindro com guias, o cilindro é fornecido com os engates para essas guias, enquanto os braços de guia devem ser fornecidos pelo cliente e taxativamente montados antes de se colocar o equipamento em funcionamento. Os braços de guia devem ser montados respeitando-se as distâncias de segurança definidas pela norma EN81-20/50 (distância livre ≥ 0,3 m entre as vigas sucessivas de guia e entre vigas superiores e partes mais baixas da cabine, quando a cabine se apoia nos amortecedores totalmente comprimidos).

Na seleção do cilindro, devem-se ter ainda em conta os valores corretos da pressão que podem ser lidos nos gráficos:

- Pressão mínima com a cabine vazia: 14 bar.
- Pressão máxima em carga total: ver ficha com detalhe de cada pistão

Os gráficos apresentam um valor indicativo: consulte sempre o cálculo analítico. As pressões máximas admitidas são as indicadas nas tabelas dos itens 7.3 e 7.4

Além disso, nas páginas dos dados de cada cilindro, é possível calcular a quantidade de óleo total necessária para o movimento do cilindro e seu enchimento.

A seleção da unidade de controle é feita por meio das tabelas, do seguinte modo:

- com base no tipo de cilindro telescópico escolhido e na velocidade exigida, determina-se a vazão da bomba com o motor 50 ou 60 Hz.
- Com base na pressão estática máxima em carga total, determina-se a potência do motor a ser combinado com a bomba previamente determinada. A potência do motor indicada nas tabelas com base na vazão da bomba e na pressão estática máxima se refere a condições de tráfico médias e a comprimentos de tubos de conexão não superiores a 7/8 metros. Para condições de tráfico muito severas, comprimentos dos tubos de conexão superiores a 7/8 metros ou cabines guiadas em modo assimétrico, em que as perdas de pressão e os atritos são elevados, é necessário levar em conta cada queda de pressão e adicionar sua soma à pressão estática determinada nos gráficos.

9
2
70

D.		HC				NL 210					NL 380		NL	600	Pre	TIPO DI VALVOL
DIAMETRO	1/2	2"-3/4"				1 1/4"			1 1/2"	11	/2"	2"	2	ıı.	ess sta	ATTACCO
RO S	30	35-45	55	75	100	125	150	180	210	250	300	380	500	600	at. ma (bai	POMPA I/min
STELO (mm)					6,5 8,0 11 1 4,8 5,9 7,7 9,	3 8,0 11 13 15 17 20 6 5,9 7,7 9,6 11,0 12,5 14,7					20 25 30 40 14,7 18,4 22,1 29,4	25 30 40 50 18,4 22,1 29,4 36,8	30 40 50 60 70 22,1 29,4 36,8 44,1 51,5	40 50 60 70 80 29,4 36,8 44,1 51,5 58,8	x Cilindro	HP MOTORE kW MOTORE
3			22 34 45	24 35 45	16 24 34 4	5 18 26 34 40 43 45	20 27 32 39 45	24 29 34 45	19 25 28 37 45	23 30 38 45	18 24 30 45	12 22 32 45	15 22 30 37 45	15 21 28 34 45	0	Press. Static Max.
46/2			0,55	0,75	1,00	-	-	-	-	-	-	-	-	-	42	1
50/2		_	0,48	0,65	0,87	1,09	-	-	-	-	-	-	-	-	50	1
60/2		/ec	0,32	0,43	0,59	0,72	0,88	1,06	-	-	-	-	-	-	44	ᆏ
77/2		₽	0,19	0,26	0,35	0,43	0,53	0,63	0,73	0,88	1,05	-	-	-	43	TELESC
85/2		ō	0,16	0,22	0,29	0,36	0,44	0,53	0,60	0,74	0,88	1,05	-	-	44	유
103/2		dot	0,11	0,15	0,20	0,25	0,30	0,36	0,41	0,50	0,61	0,77	1,01	1,21	45	ICI 2 S
120/2		<u>∺</u>	0,08	0,10	0,15	0,18	0,22	0,26	0,30	0,37	0,44	0,56	0,73	0,88	42	MO
141/2		9	-	0,08	0,11	0,13	0,16	0,19	0,22	0,27	0,32	0,40	0,53	0,64	45	OTOR
170/2		≤	-		0,07	0,09	0,11	0,13	0,15	0,18	0,22	0,28	0,37	0,44	42	E 2 F
205/2		vedi prodotti HOMELIFT,	-	-	0,05	0,07	0,08	0,09	0,10	0,13	0,15	0,19	0,25	0,30	42	MOTORE 2 POLI 2750 g/min
58/3		Ë,	0,35	0,48	0,64	0,79	0,95	1,15	-	-	-	-	-	-	27	2750
75/3		Cap.6	0,21	0,27	0,38	0,46	0,57	0,68	0,77	0,94	1,13	-	-	-	30	(
98/3		p.6	0,12	0,16	0,22	0,27	0,33	0,40	0,45	0,55	0,66	0,84	1,10	-	32	vers TEL
107/3		0,	0,10	0,14	0,19	0,22	0,28	0,33	0,38	0,47	0,56	0,71	0,93	1,12	29	ESCC
127/3			-	0,10	0,13	0,16	0,20	0,24	0,27	0,33	0,39	0,50	0,66	0,79	30 42LV	PICI 3 ST alta pre
150/3			-	-	0,09	0,11	0,14	0,17	0,19	0,24	0,28	0,36	0,47	0,57	29 41LV 32	Ssic
176/3			-	-	-	0,08	0,10	0,12	0,14	0,17	0,21	0,26	0,34		32 44LV	
			anche monof sione alta pre													50 Hz

Os valores de corrente indicados são os nominais da placa do motor. Considerando-se a variabilidade das características de realização dos equipamentos, das condições operacionais de pressão e temperatura e das tolerâncias construtivas dos motores e bombas, as velocidades detectáveis em exercício podem diferir em até 15% com relação ao que é indicado na tabela.

SELEÇÃO DO MOTOR

BOMBA 60

NL 210 NL 380 NL 600 TPO DI VALVOLA 1/2" - 3/4" 1 1/4" 1 1/2" 1 1/2" 2" ATTACCO 180 360 150 215 6,5 8 10,5 6,5 8 10,5 13 8 10,5 13,0 15,0 17 20 10,5 13 15 17 20 13 15 17 20 25 15 17 20 25 30 20 25 30 40 20 25 30 40 25 30 40 50 30 40 50 60 4,8 5,9 7,7 4,8 5,9 7,7 9,6 5,9 7,7 9,6 11,0 12,5 14,7 7,7 9,6 11,0 12,5 14,7 9,6 11,0 12,5 14,7 9,6 11,0 12,5 14,7 18,4 12,1 12,1 14,7 18,4 12,1 12,1 14,7 18,4 12,1 12,1 14,7 18,4 12,1 12,1 14,7 18,4 12,1 12,1 14,7 18,4 12,1 12,1 14,7 18,4 14,7 18,4 14,7 18,4 14,7 18,4 14,7 18,4 14,7 18,4 14,7 18,4 14,7 18,4 14,7 18,4 14,7 18,4 14,7 1 Press. Statica 23 36 45 15 24 35 45 15 23 32 38 41 45 18 24 30 38 45 18 23 28 32 45 17 22 26 34 45 22 29 36 45 16 22 32 45 17 22 32 45 16 24 32 45 15 21 27 33 45 0,66 1,20 50/2 1,04 1,31 50 0,58 0,78 60/2 vedi prodotti HOMELIFT, Cap.6 0,38 0,52 0,71 0,86 1,27 44 77/2 43 0,42 0,52 0,76 0,31 0,88 1,06 1,26 44 0,35 0,43 0,72 0,89 45 103/2 0,18 0,24 0,30 0,43 0,49 1,45 0,13 0,60 0,73 0,92 1,21 120/2 42 0,10 0,12 0,18 0,22 0,31 0,36 0,44 0,53 0,67 0,88 1,06 45 141/2 0,13 0,16 0,23 0,26 0,32 0,38 0,48 0,64 0,77 170/2 0,08 0,11 0,16 0,18 0,22 0,26 0,34 0,44 0,53 42 42 205/2 0,06 0,08 0,11 0,12 0,16 0,18 0,23 0,30 0,36 27 0,42 0,58 0,77 0,95 1,38 0.46 0.55 0.92 30 1,13 1.36 0,19 0,26 0,32 0,48 0,54 1,01 1,32 32 0,14 0,66 0,79 107/3 0,26 0,40 0,46 29 0,12 0,17 0,23 0,56 0,67 0,85 1,12 1,34 30 42LV 127/3 0.16 0,32 0.95 0.12 0.19 0.29 0.40 0.47 0.60 0.79 29 41LV 150/3 0.68 0,11 0,13 0,20 0,23 0.29 0.34 0,43 0.56 32 44LV 0,10 0,14 0,17 0,20 0,25 0,31 0,41 0,49 * = Motore disponibile anche monofase 60 Hz LV = cilindro 3 stadi versione alta pressione

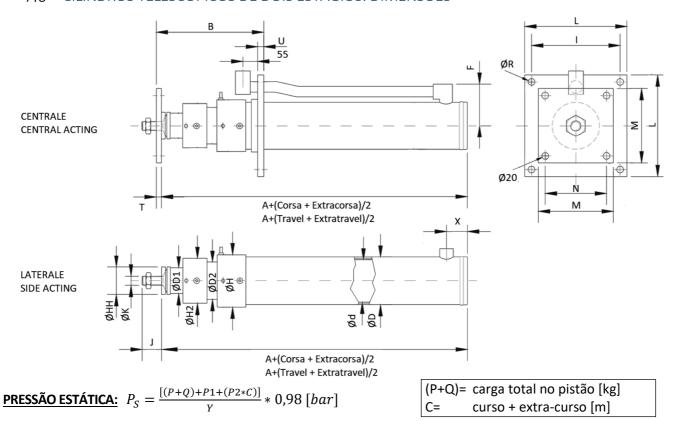
Os valores de corrente indicados são os nominais da placa do motor. Considerando-se a variabilidade das características de realização dos equipamentos, das condições operacionais de pressão e temperatura e das tolerâncias construtivas dos motores e bombas, as velocidades detectáveis em exercício podem diferir em até 15% com relação ao que é indicado na tabela.

7.5 PESO DOS CILINDROS TELESCÓPICOS

Peso para cada metro de curso x CURSO + PESO FIXO (kg)

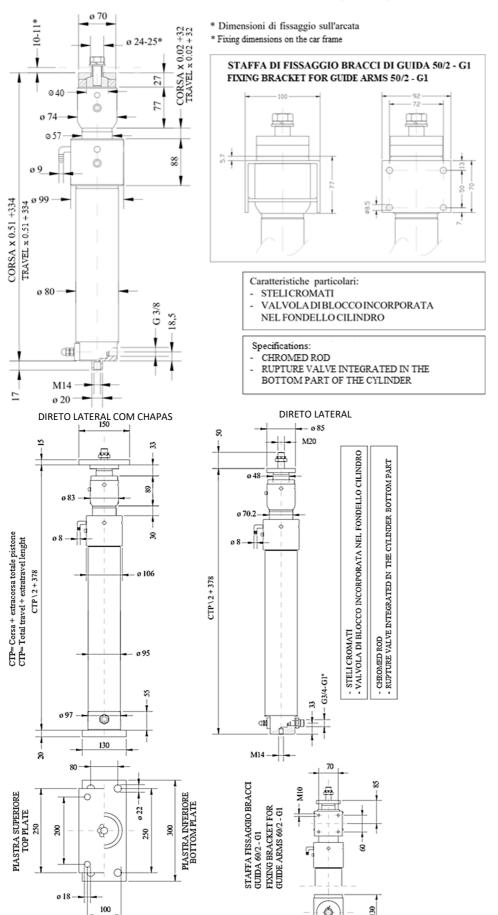
O peso do cilindro é calculado multiplicando-se o curso do cilindro em metros pelo peso/metro, mais o peso fixo. O peso fixo dos cilindros telescópicos é fortemente influenciado por algumas variantes que dependem do curso do próprio cilindro:

- Presença ou não de engates para os braços de guia.
- Comprimento dos espaçadores internos para a sincronização.
- Diferentes tamanhos da válvula de bloqueio etc.


OBS.: O PESO TÉÓRICO OBTIDO NAS TABELAS PODE SE MOSTRAR LIGEIRAMENTE DIFERENTE DO PESO REAL DO CILINDRO TELESCÓPICO.

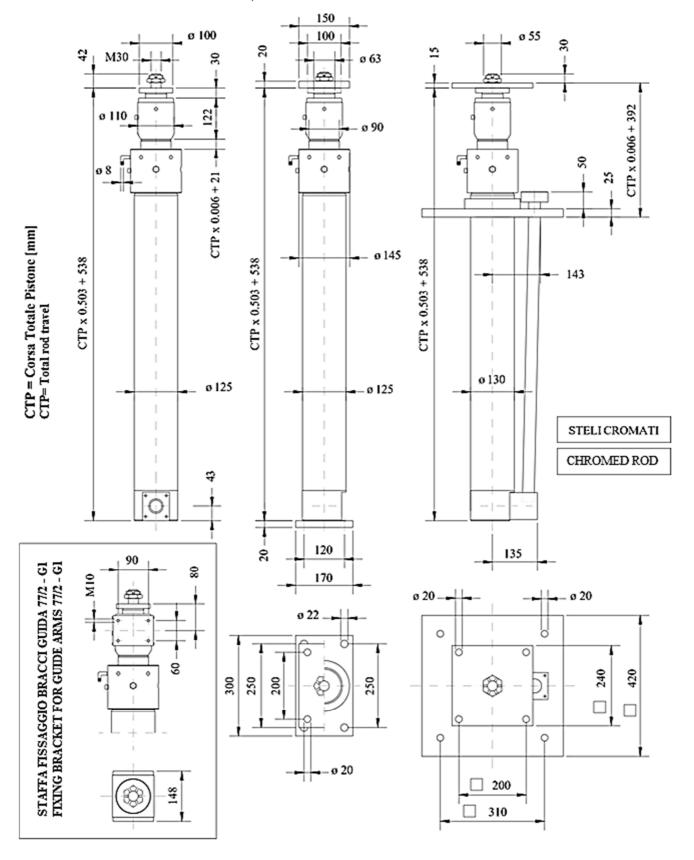
MODELO 2 ESTÁGIOS	46/2	50/2 HOME	60/2 HOME	60/2	77/2	85/2	103/2	120/2	141/2	170/2	205/2
Peso/metro_curso [kg _f /m]	13,5	15	17	19,8	35	38,3	43,3	52	80,1	91,9	116,2
Peso fixo direto central [kg _f]	57	-	-	65	100	100	140	200	245	340	470
Peso fixo direto lateral [kg _f]	28	40	47	36	84	64	98	149	193	267	364
Óleo de enchimento/metr o_curso [l/m]	2.5	1,9	4.2	4.2	7	8,5	12,2	17,1	23,4	33,6	49
Óleo de movimento/metr o_curso [I/m]	1,7	2.8	2.8	2.8	4,8	5,7	8,3	11,4	15,7	49	33

MODELO 3 ESTÁGIOS	58/3	75/3	98/3	107/3	127/3	150/3	176/3
Peso/metro_curso [kg _f /m]	16,8	24.2	35	53,6	52.6	83,7	122,3
Peso fixo direto central [kg _f]	80	110	160	200	275	416	560
Peso fixo direto lateral [kg _f]	52	75	125	155	227	345	472
Óleo de enchimento/metr o_curso [l/m]	5.1	7,9	13,1	15,5	21,7	30,7	41,9
Óleo de movimento/metr o_curso [l/m]	2.6	4.4	7,6	9	12,7	17,7	24,4


7.6 CILINDROS TELESCÓPICOS DE DOIS ESTÁGIOS: DIMENSÕES

MODELO 2 ESTÁGIOS	46/2	50/2 HOME	60/2 HOME	60/2	77/2	85/2	103/2	120/2	141/2	170/2	205/2
Α	425			378		555	630	670	750	840	910
В	365			380		420	450	460	480	530	560
Ød	65			85		120	145	170	200	240	290
ØD	80			100		140	165	190	229	273	324
ØН	100			106		160	190	220	254	300	350
ØD1	35			48		70	85	97	120	146	180
ØD2	55	72	/2	70	72	98	118	140	160	190	228
ØD3	-	20	09 (-	77	-	-	-	-	-	-
F	110	VER DESENHO ESPECÍFICO 50/2	VER DESENHO ESPECÍFICO 60/2	120	VER DESENHO ESPECÍFICO 77/2	145	160	175	205	230	255
ØH2	74	Ä	CÍF	83	:CÍF	116	137	161	188	215	256
ØНЗ	1	SPE	SPE	ı	SPE	-	-	•	-	-	-
Øнн	70	IO E	IO E	85	IO E	100	100	100	150	150	200
Øκ	M16	Ξ	N.	M20	Z	M30	M30	M30	M30	M30	M30
J	53	ESE	ESE	53	ESE	53	52	52	54	54	57
I	250) K	ir d	250	ir d	310	310	370	370	450	500
L	300	3	N.	300	N.	420	420	500	500	600	600
M	240			240		240	300	300	300	300	360
N	200			200		200	260	260	260	260	320
ØR	20			20		20	20	24	24	24	24
Т	15			15		15	20	20	25	25	30
U	20			20		25	25	30	35	40	45
Х	50			50		50	55	60	65	70	70
P1 [kg]	8	8	12	12	25	16	21	34	42	64	85
P2 [kg/m]	5,3	6	10,2	9,2	16	18,7	18,2	21,8	32,5	28,7	36,4
Υ	16,6	18,86	28,37	28,4	47,51	56,6	82,6	113,5	157,1	226,2	330,3
Pmax [bar]		50	45	44	43	44	45	42	45	42	42

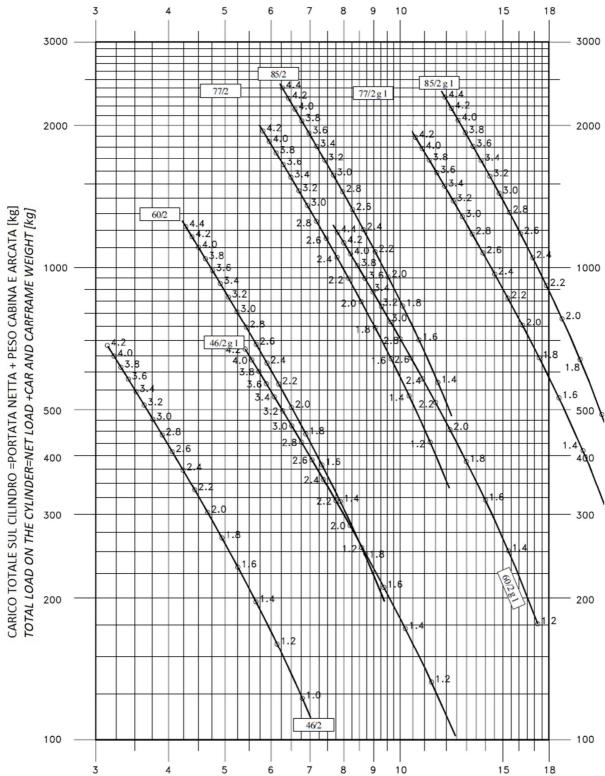
7.7 CILINDROS TELESCÓPICOS HOMELIFT 50/2 e 60/2



50/2 HOME

60/2 HOME

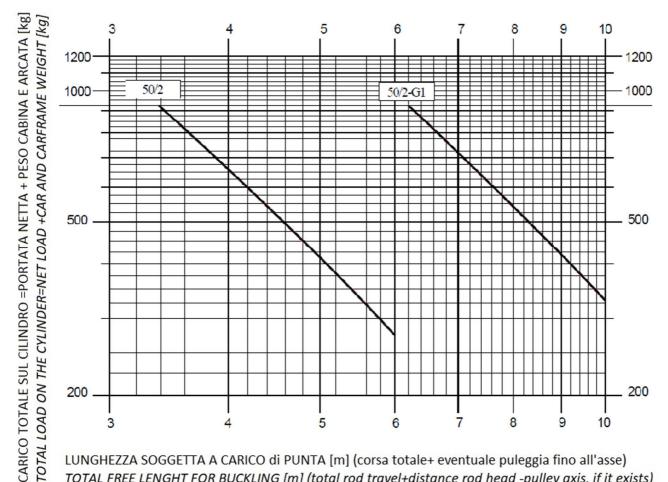
7.8 CILINDRO TELESCÓPICO 77/2



7.9 CT-2: DIAGRAMAS DE SEGURANÇA DAS HASTES EM PICO DE CARGA (NORMA EN81-20/50)

GRAU DE SEGURANÇA SEGUNDO EULERO ≥ 2,8

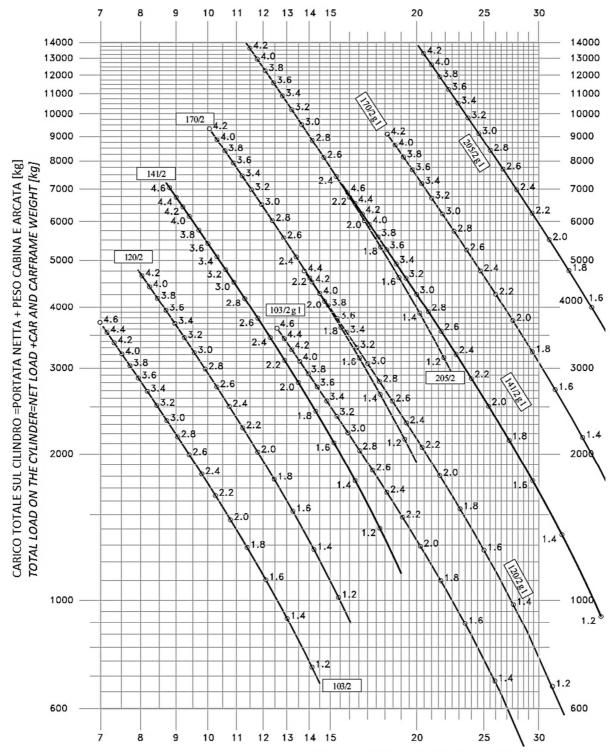
LEGENDA: 60/2g1= cilindro telescópico 60 com dois telescópicos e 1 braço de guia. Pressões indicadas em MPa=10 bar


LUNGHEZZA SOGGETTA A CARICO di PUNTA [m] (corsa totale+ eventuale puleggia fino all'asse)

TOTAL FREE LENGHT FOR BUCKLING [m] (total rod travel+distance rod head -pulley axis, if it exists)

GRAU DE SEGURANÇA SEGUNDO EULERO ≥ 2,8

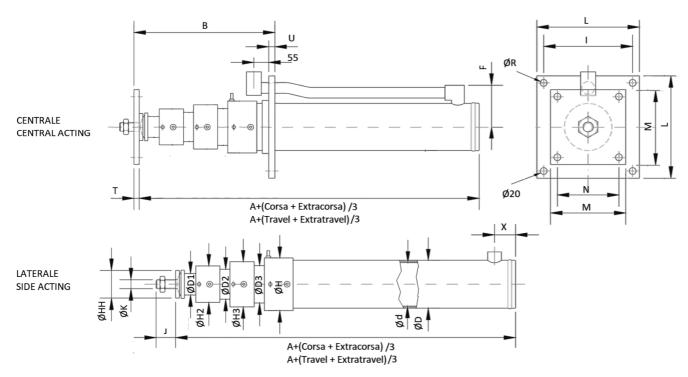
LEGENDA: 50/2g1= cilindro telescópico 50 com dois telescópicos e 1 braço de guia. Pressões indicadas em MPa=10 bar



LUNGHEZZA SOGGETTA A CARICO di PUNTA [m] (corsa totale+ eventuale puleggia fino all'asse) TOTAL FREE LENGHT FOR BUCKLING [m] (total rod travel+distance rod head -pulley axis, if it exists)

GRAU DE SEGURANÇA SEGUNDO EULERO ≥ 2,8

LEGENDA: 170/2g1= cilindro telescópico 170 com dois telescópicos e 1 braço de guia. Pressões indicadas em MPa=10 bar



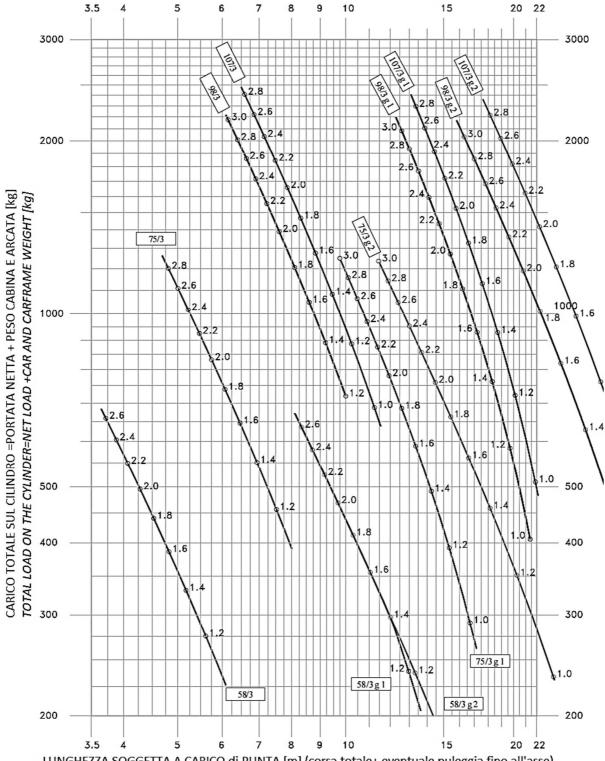
LUNGHEZZA SOGGETTA A CARICO di PUNTA [m] (corsa totale+ eventuale puleggia fino all'asse)

TOTAL FREE LENGHT FOR BUCKLING [m] (total rod travel+distance rod head -pulley axis, if it exists)

7.10 CILINDROS TELESCÓPICOS DE TRÊS ESTÁGIOS: DIMENSÕES

PRESSÃO ESTÁTICA: $P_S = \frac{[(P+Q)+P1+(P2*C)]}{Y}$ *0,98 [bar]

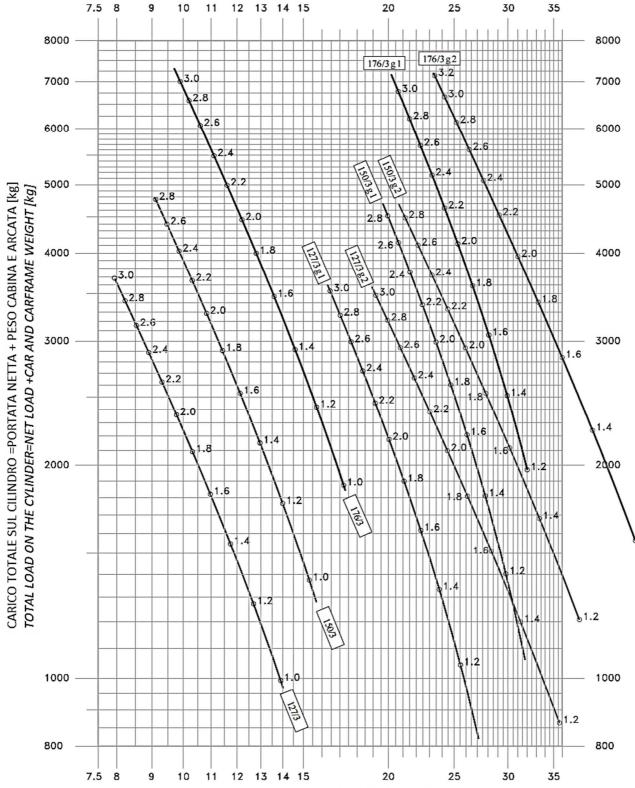
(P+Q)= carga total no pistão [kg] C= curso + extra-curso [m]


MODELO										
3 ESTÁGIOS	58/3	75/3	98/3	107/3	127/3	127/3 LV	150/3	150/3 LV	176/3	176/3 LV
A	680	735	835	855	955	975	1020	1040	1115	1135
B	520	550	585	585	660	680	680	700	715	735
Ød	100	130	170	185	220	220	260	260	305	305
ØD ØU	120	150	190	210	245	245	298	298	343	343
ØН	135	170	215	240	280	280	325	325	380	380
ØD1	35	48	64,5	70	85	85	97	97	120	120
ØD2	55	70	89	98	118	118	140	140	160	160
ØD3	76	98,5	130	140	165	165	197	197	230	230
F	140	150	170	185	200	200	240	240	265	265
ØH2	74	89	106	116	137	137	161	161	188	188
ØH3	96	118	149	161	188	188	215	215	256	256
ØНН	70	85	100	100	100	100	100	100	150	120
ØК	M16	M20	M30	M30	M30	M30	M30	M30	M30	M30
J	53	53	42	53	52	52	54	54	54	54
Ī	250	310	310	370	370	370	450	450	500	500
L	300	420	420	500	500	500	600	600	600	600
M	240	240	240	240	300	300	300	300	300	300
N	200	200	200	200	260	260	260	260	260	260
ØR	20	20	20	24	24	24	24	24	24	24
Т	15	15	20	20	20	20	25	25	25	25
U	20	25	25	30	35	35	40	40	45	45
Х	55	55	55	60	65	65	70	70	75	75
P1 [kg]	16	20	29	33	46	46	69	69	90	90
P2 [kg/m]	4,9	8,3	12,2	16,7	17,8	17,8	23,1	23,1	32,6	32,6
Υ	26,2	44,2	75,7	89,6	126,7	126,7	177	177	243,5	243,5
Pmax [bar]	27	30	32	29	30	45	29	42	32	44

7.11 CT-3: DIAGRAMAS DE SEGURANÇA DAS HASTES EM PICO DE CARGA (NORMA EN81-20/50)

GRAU DE SEGURANÇA SEGUNDO EULERO ≥ 2,8

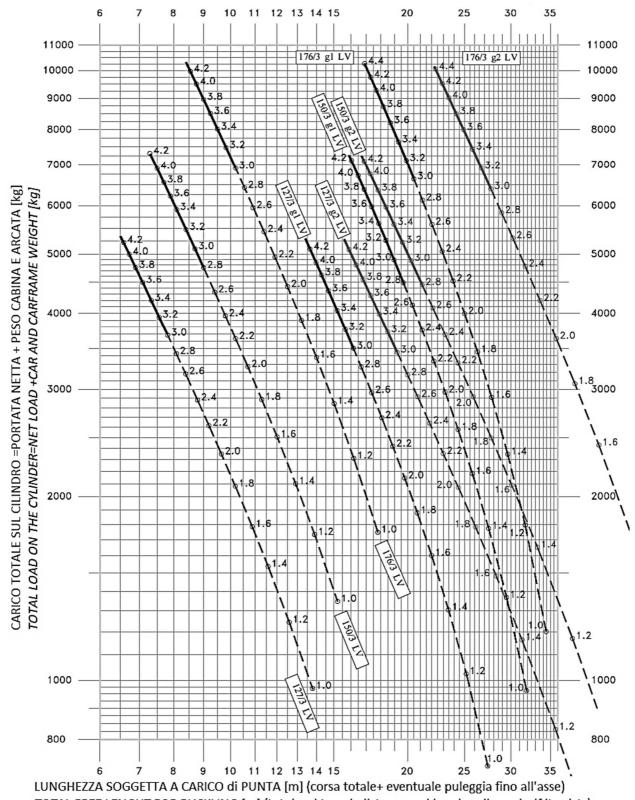
LEGENDA: 107/3g1= cilindro telescópico 170 com três telescópicos e 1 braço de guia. Pressões indicadas em MPa=10 bar



LUNGHEZZA SOGGETTA A CARICO di PUNTA [m] (corsa totale+ eventuale puleggia fino all'asse)
TOTAL FREE LENGHT FOR BUCKLING [m] (total rod travel+distance rod head -pulley axis, if it exists)

GRAU DE SEGURANÇA SEGUNDO EULERO ≥ 2,8

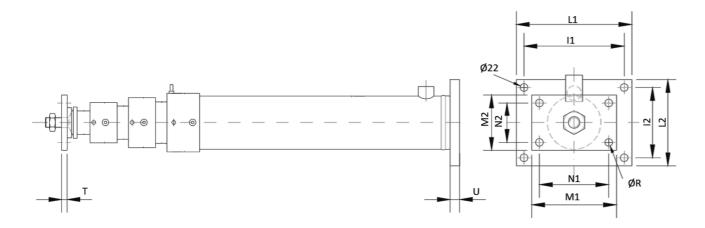
LEGENDA: 127/3g1= cilindro telescópico 127 com três telescópicos e 1 braço de guia. Pressões indicadas em MPa=10 bar


LUNGHEZZA SOGGETTA A CARICO di PUNTA [m] (corsa totale+ eventuale puleggia fino all'asse)

TOTAL FREE LENGHT FOR BUCKLING [m] (total rod travel+distance rod head -pulley axis, if it exists)

GRAU DE SEGURANÇA SEGUNDO EULERO ≥ 2,8

LEGENDA: 127/3g1 LV= cil. telescópico 127 alta press (LV) de três telescópicos com 1 braço de guia. Press em MPa=10bar A curva tracejada indica que é possível utilizar o cilindro normal correspondente, não LV



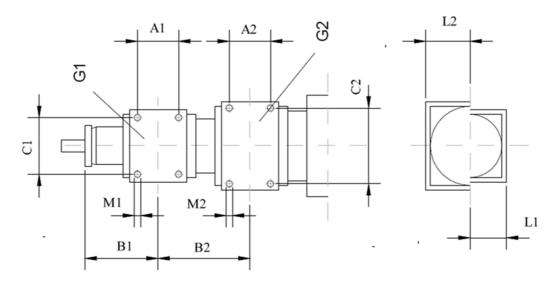
TOTAL FREE LENGHT FOR BUCKLING [m] (total rod travel+distance rod head -pulley axis, if it exists)

7.12 CHAPAS INFERIORES e SUPERIORES DOS CILINDROS DIRETOS LATERAIS

Os cilindros de dois e três estágios laterais são fornecidos inclusive com chapas superiores e inferiores opcionais

2 ESTÁGIOS

MODELO 2 ESTÁGIOS	46/2	50/2 HOME	60/2 HOME	60/2	77/2	85/2	103/2	120/2	141/2	170/2	205/2
l1	250		-	250		250	350	350	350	400	480
I2	70	50/2	60/2	80	2/77	120	160	160	200	270	310
L1	300			300		300	400	400	400	450	530
L2	120	ESPECÍFICO	ESPECÍFICO	130	ESPECÍFICO	170	210	210	250	320	360
M1	250	PEC	PEC	250	PEC	250	250	250	300	300	400
M2	150			150		150	150	150	200	200	300
N1	200	DESENHO	DESENHO	200	DESENHO	200	200	200	250	250	350
N2	100	SEN	SEN	100	SEN	100	100	100	150	150	250
ØR	18			18		20	20	20	22	22	24
T	15	VER	VER	15	VER	20	20	20	25	25	30
U	20] _		20		20	25	25	25	25	30


3 ESTÁGIOS

MODELO 3 ESTÁGIOS	58/3	75/3	98/3	107/3	127/3	127/3 LV	150/3	150/3 LV	176/3	176/3 LV
l1	250	250	350	350	400	400	400	400	500	500
I2	100	120	160	200	230	230	270	270	330	330
L1	300	300	400	400	450	450	450	450	550	550
L2	150	170	210	250	280	280	320	320	380	380
M1	250	250	250	250	250	250	250	250	300	300
M2	150	150	150	150	150	150	150	150	200	200
N1	200	200	200	200	200	200	200	200	250	250
N2	100	100	100	100	100	100	100	100	150	150
ØR	18	18	20	20	20	20	20	20	22	22
T	15	15	20	20	20	20	20	20	25	25
U	20	20	25	25	25	25	25	25	30	30

7.13 BRAÇOS DE GUIA

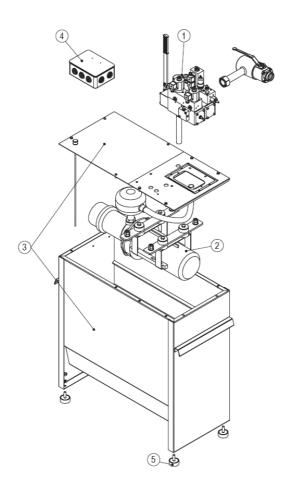
Para permitir a chegada a cargas mais altas no pistão, em combinação com altos comprimentos de abertura, podem ser adicionados braços de guia em cada telescópico, de modo a aumentar a resistência ao pico de carga. Nos diagramas, as curvas correspondentes são indicadas com a letra "g", seguida pelo número de braços de guia adotados (g1, g2)

2 ESTÁGIOS

MODELO 2 ESTÁGIOS	46/2	50/2 HOME	60/2 HOME	60/2	77/2	85/2	103/2	120/2	141/2	170/2	205/2
A1	60	-: 0		60		60	60	60	80	80	80
B1	95	ESEN. ÍFICO /2	SEN. FICO	95	ESEN. ÍFICO /2	102	120	118	125	134	135
C1	60	ECÍF 50/2	DES ECÍF 60/2	70	DE:	90	110	130	150	180	200
M1	M10	VER ESPE	VER ESPE	M10	VER ESPE	M10	M10	M12	M16	M16	M16
L1	57]	/ ш	65		74	89	101	117	131	151

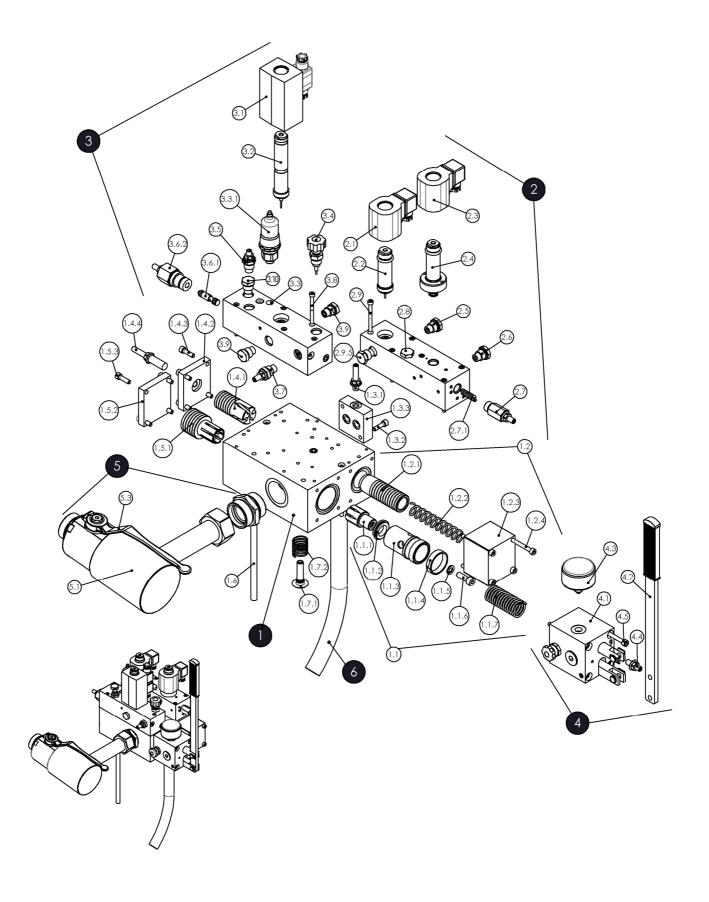
3 ESTÁGIOS

MODELO 3 ESTÁGIOS	58/3	75/3	98/3	107/3	127/3	127/3 LV	150/3	150/3 LV	176/3	176/3 LV
A1	60	60	60	60	60	60	60	60	80	80
B1	85	85	87	90	115	115	120	120	136	136
C1	60	70	90	100	110	110	130	130	150	150
M1	M10	M10	M10	M10	M10	M10	M12	M12	M16	M16
L1	57	65	74	78	89	89	101	101	117	117
A2	60	60	60	60	80	80	80	80	80	80
B2	145	145	153	153	165	165	167	167	155	155
C2	80	100	120	130	150	150	180	180	200	200
M2	M10	M10	M12	M12	M16	M16	M16	M16	M16	M16
L2	68	79	95	101	117	117	131	131	151	151


8 PEÇAS DE REPOSIÇÃO

Este capítulo contém informações úteis para a montagem, a gestão e a manutenção dos equipamentos hidráulicos OMARLIFT. É um capítulo esquemático e rico em tabelas, idealizado para facilitar a procura do componente de que se precisa. No momento, contém informações relativas às peças padrão, e será ampliado e melhor detalhado nas futuras revisões. Nós o convidamos a nos enviar qualquer sugestão a respeito, pois isso será útil para melhorarmos o serviço que fornecemos. Para qualquer detalhe específico, solicitação de artigos especiais ou esclarecimentos de qualquer tipo, o Departamento Comercial da OMARLIFT está à sua disposição.

8.1 UNIDADE DE CONTROLE


LEGENDA

N°	DESCRIÇÃO					
1	VÁLVULA NL e Acessórios					
2	GRUPO DO MOTOR – BOMBA e Acessórios					
3	RESERVATÓRIO e Acessórios					
4	CAIXA ELÉTRICA e Acessórios					
5	ANTIVIBRATÓRIOS e Outros acessórios para a unidade de controle					

Para cada peça de reposição relativa à unidade de controle, entre em contato com o Departamento Comercial da OMARLIFT.

8.2 GRUPO DA VÁLVULA NL

	75071070		25001030
Nº	DESCRIÇÃO	Nº	DESCRIÇÃO
1	CORPO DA VÁLVULA	2,4	Parte mecânica para EVS (sob encomenda)
1.1	Conjunto VBP	2.5	Parafuso n° 5
1.1.1	Pistão VBP	2.6	Parafuso n° 7
1.1.2	Vedação principal VBP	2.7	Parafuso n° 1
1.1.3	Pistão VBP	2.7.1	Mola para parafuso n° 1
1.1.4	Anel-guia	2.8	Alojamento para parafuso n° 10
1.1.5	Arruela	2.9	Parafuso de fixação (x 6) M5 x 55
1.1.6	Parafuso de fixação (x 1) M8 x 25	2.9.5	Estrangulador não regulável
1.1.7	Mola para VBP	3	PILOTO DE DESCIDA
1.2	Kit silêncio	3.1	Bobina dupla para EVD
1.2.1	Pistão VM cônico	3.2	Parte mecânica dupla para EVD
1.2.2	Mola para VM	3.3	Alojamento para pressostatos
1.2.3	Chapéu	3.3.1	Pressostato
1.2.4	Parafuso de fixação (x 4) M6 x 65	3.4	Botão de emergência
1.3.1	Parafuso n° 2	3.5	Parafuso n° 4
1.3.2	Parafuso de fixação (x 2) M6 x 22	3.6.1	Pistão VRA
1.3.3	Tampa	3.6.2	Parafuso n° 8
1.4.1	Pistão VRF	3.7	Parafuso n° 3
1.4.2	Tampa	3.8	Parafuso de fixação (x 6) M55 x 55
1.4.3	Parafuso de fixação (x 4) M6 x 22	3.9	Estrangulador não regulável
		3.10	Paraf. n° 15 (opc.)/Estrang. não regulável
1.4.4	Parafuso n° 6	4	CONJUNTO DE BOMBA DE MÃO
1.5.1	Pistão VBS	4.1	Corpo da bomba de mão
1.5.2	Tampa	4.2	Alavanca
1.5.3	Parafuso de fixação (x 4) M6 x 22	4.3	Manômetro
1.6	Tubo PVC (x 2)	4.4	Parafuso n° 9
1.7.1	Pistão VR	4.5	Parafuso de fixação (x 4) M6 x 80
1.7.2	Mola para VR	5	FILTRO DE TORNEIRA
2	PILOTO DE SUBIDA	5.1	Corpo do filtro de torneira
2.1	Bobina para EVR	5.2	Conexão
2.2	Parte mecânica para EVR	5.3	Alavanca do filtro
2.3	Bobina para EVS (sob encomenda)	6	TUBO DE DESCARGA

TABELA DE CONFIGURAÇÃO DA VÁLVULA NL

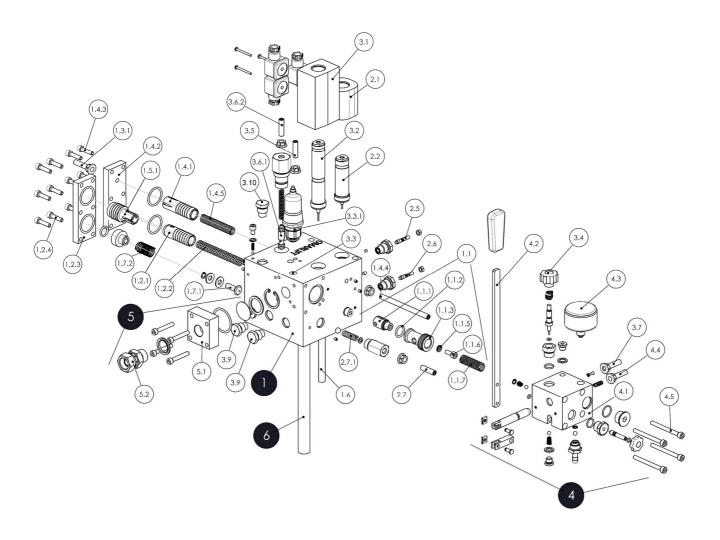
,								
CONFIGURAÇÃO DO BLO	CO DA VÁ	LVULA NL						
Tipo de válvula		NL21	LO		NL3	380	NL600	
Engate do tubo	3/4"	3/4" 1" 1/4 1" 1/2			1" 1/2	2"	2"	
Tipo de reservatório	110/S	110/S 135/S 210/S	320/S	210/S 320/S 450	320/S 450	450	680	
Intervalo de vazão l/min	25 35	55 - 75 100 125 - 150	100 125 150	180 210	250 300	380	500 600	CARACTERÍSTICAS PADRÃO
Arranque do motor								
Tensão das Bobinas Volt		12 - 24 - 48 - 60 - 110 - 180 - 220 (/12 Volt Emergência sob encomenda)						
Filtro de Torneira	FR- HC34	FR114 FR1			112 FR200		200	
Tipo de embalagem			• [Padrão				
● Bomba de mão								
 Arranque λ-Δ 								
Arranque soft-starter								
• Resistência de aquecim	ento da v	álvula						
• Pressostato de mínima								ACESSÓRIOS
Pressostato de máxima							OPCIONAIS	
● Pressostato de sobrecarga ● NA ● NC								
Dispositivo Soft-Stop								
● Parafuso n° 15 de regulagem da partida em descida								
Tipo de embalagem		Caixa de m	adeira					

TABELA DE CONFIGURAÇÃO DO BLOCO DE SUBIDA

CONFIGURAÇÃO DO BLOCO DE SUBIDA						
Tipo de válvula	NL210					
Intervalo de vazão I/min	55-75-100-125-150-180-210	CARACTERÍSTICAS				
Arranque	DIRE		PADRÃO			
Tensão das Bobinas Volt	12 - 24 - 48 - 60 -					
Bobina EVS para arrar	ACESSÓRIOS					
• Kit de parafusos n° 10	Kit de parafusos n° 10 para arranque Soft-starter					

TABELA DE CONFIGURAÇÃO DO BLOCO DE DESCIDA

CONFIGURAÇÃO DO BLOCO DE DESCIDA							
Tipo de válvula	NL210	NL380	NL600				
Intervalo de vazão I/min	55-75-100-125-150–180-210	250 - 300 - 380	500 - 600	CARACTERÍSTICAS PADRÃO			
Tensão das Bobinas Volt	12 - 24 - 48 - 60 - 110 - 180 - 220						


_	SOBRE	CARGA						
	Normalmente aberto	Normalmente fechado						
	Código	Código						
ros	CA100000	CA100073						
PRESSOSTATOS	PRESSOSTATO DE MÁXIMA	PRESSOSTATO DE MÍNIMA						
ESSO	Código	Código						
PR	CA100354	CA101683						
_	Conexão de três vias para	mais de dois pressostatos						
	Código							
	8H3F	8H3F0002						

BOMBA DE MÃO	NOVO A PAF	RTIR DE 2006	VELHO DE 1977 A 2006			
Descrição	TIPO PM - 6	TIPO PM – 6A	TIPO PM - 10	TIPO PM – 10A		
Alavanca	8H202572	8H202572	8H201518	8H201518		
Corpo	8H202570	8H202650	8H201516	8H201787		
Manômetro	CA100132	CA100132	CA100220	CA100220		
Completa	8H300631	8H300637	8H300277	8H300240		

VEDAÇÕES PARA VÁLVULA NL	VBP	KIT COMPLETO
TIPO NL	CÓDIGO	CÓDIGO
NL210	8H200941	8H3F0148
NL380	8H200942	8H3F0149
NL600	8H200943	8H3F0150

8.3 GRUPO DA VÁLVULA HC

Nº	DESCRIÇÃO	Nº	DESCRIÇÃO
1	CORPO DA VÁLVULA	2.5	Parafuso n° 5
1.1	Conjunto VBP	2.6	Parafuso n° 7
1.1.1	Pistão VBP	2.7	Parafuso n° 1
1.1.2	Vedação principal VBP	2.7.1	Mola para parafuso n° 1
1.1.3	Pistão VBP	3.1	Bobina dupla para EVD
1.1.5	Arruela	3.2	Parte mecânica dupla para EVD
1.1.6	Parafuso de fixação (x 1) M6 x 16	3.3	Alojamento para pressostatos
1.1.7	Mola para VBP	3.3.1	Pressostato
1.2.1	Pistão VM	3.4	Botão de emergência
1.2.2	Mola para VM	3.5	Parafuso n° 4
1.2.3	Chapéu	3.6.1	Pistão VRA
1.2.4	Parafuso de fixação (x 4) M6 x 65	3.6.2	Parafuso n° 8
1.3.1	Parafuso n° 2	3.7	Parafuso n° 3
		3.9	Estrangulador não regulável
1.4.1	Pistão VRF	3.10	Parafuso n° 15 (opc.)/Estrang. não regulável
1.4.2	Tampa	4	CONJUNTO DE BOMBA DE MÃO
1.4.3	Parafuso de fixação (x 4) M6 x 25	4.1	Corpo da bomba de mão
1.4.4	Parafuso n° 6	4.2	Alavanca
1.4.5	Mola VRF	4.3	Manômetro
1.5.1	Pistão VBS	4.4	Parafuso n° 9
1.6	Tubo PVC (x 2)	4.5	Parafuso de fixação (x 4) M6 x 65
1.7.1	Pistão VR	5	FILTRO DE TORNEIRA
1.7.2	Mola para VR	5.1	Corpo do filtro de torneira
2.1	Bobina para EVR	5.2	Conexão
2.2	Parte mecânica para EVR	6	TUBO DE DESCARGA

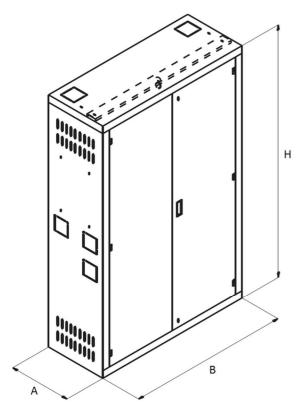
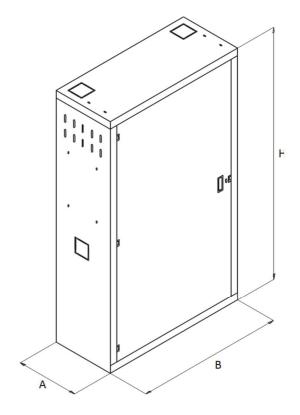

8.4 ACESSÓRIOS DO RESERVATÓRIO

TABELA DE ACESSÓRIOS DA UNIDADE DE CONTROLE


ACESSÓRIOS PARA RESERVATÓRIO DA UNIDADE CONTROLE	E DE		CÓDIGO			
ANTIVIBRATÓRIOS PARA RESERVATÓRIO			Todos os reservatórios	8H300528		
Bomba de mão a ser aplicada à válvula NL (PM - 6)				8H300277		
Bomba de mão a ser aplicada ao reservatório (PM - 6A)				8H300240		
Eletroválvula EVS para arranque estrela/triângulo				8H3F0073		
Kit de atraso regulável parafuso n° 10 para arranque com	Soft-Start	ter		8H3F0159		
Pressostato de sobrecarga Normalmente Aberto				CA100000		
Pressostato de sobrecarga Normalmente Fechado				CA100073		
Pressostato de pressão máx. Proteção IP54 com fio de cor	nexão e c	onector		CA100354		
Pressostato de pressão mín. Proteção IP54 com fio de con	CA101683					
Resistência de aquecimento da válvula 60 W			230 V 400 V	CA100419 CA102451		
RESISTÊNCIA DE AQUECIMENTO DO ÓLEO	2	30 V	Todos os reservatórios	CA102507		
500 W	4	00 V	Todos os reservatórios	CA102508		
MICRONIVELAMENTO			20 l/min - 2,9 kW	8H300147		
	6	kW (5160 k	cal/h) 230/400 V (+/- 10%) 3x50/60 Hz	8H300537		
Resfriamento do óleo por ar com dois tubos de conexão (3 m cada), conexões e todos os acessórios	10,	5 kW (9000	8H300644			
(3 iii caaa), coriexoes e todos os acessorios	16,4	1 kW (14000	8H300646			
Resfriamento do óleo por água com dois tubos de	10,	5 kW (9000	8H300164			
conexão (3 m cada), conexões e todos os acessórios	21	kW (18000	8H300165			
Cabeamento elétrico do resfriamento do óleo	21 kW (18000 kcal/h) 230/400 V (+/- 10%) 3x50/60 Hz					

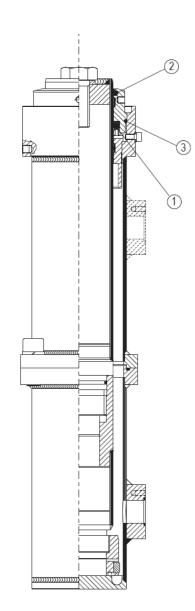
ARMÁRIOS MRL 8.5

Armadi MRL MEDIUM - LARGE - X-LARGE MRL cabinets MEDIUM - LARGE - X-LARGE

Armadio MRL mini Mini MRL cabinet

	ARMÁRIOS MRL PARA UNIDADES DE CONTROLE								
	RESERVATÓRIO	А	В	Н	CÓDIGO	OBS.			
MINI 1	C40-C50 40-50/S-60/S-90/S	410	730	1550	8H203099	SEM HDU			
MINI 1	60/S	410	730	1550	8H203099	HDU			
MINI 2	C40-C50 40-50/S-90/S	520	800	1550	8H202437	HDU			
MÉDIO	110/S – 135/S	400	900	2100	8H202430				
GRANDE	210/S 320/S	580	1120	2100	8H202431				
EXTRA-GRANDE	450 – 680	1250	1900	2200	8H202438				

Para outros dados técnicos, consulte os capítulos 4.9 e 6.16.


ATENÇÃO: NÃO SUPERE A CARGA MÁX. INDICADA NA VIGA.

8.6 CILINDROS

8.6.1 CILINDROS PADRÃO

DATA DE INÍCIO DE PRODUÇÃO								
C97	T91	CF2	CF1					
21 Nov 1997	-	-	-					
21 Nov 1997	Apr 1992	-	1977 / 1985 – 1986					
01 Out 1997	Jul 1991	1986 / 1991	1977 / 1985 – 1986					
21 Nov 1997	Out 1991	1986 / 1991	1977 / 1985 – 1986					
Out 2005	-	1986 / 1991	-					
21 Nov 1997	1992	1986 / 1991	1977 / 1985 – 1986					
01 Out 1997	Set 1991	1986 / 1991	1977 / 1985 – 1986					
03 Nov 1997	Set 1992	1986 / 1991	1977 / 1985 – 1986					
10 Nov 1997	Mar 1992	1986 / 1991	1977 / 1985 – 1986					
10 Nov 1997	Mar 1992	1986 / 1991	1977 / 1985 – 1986					
10 Nov 1997	Set 1992	1986 / 1991	1977 / 1985 – 1986					
Mar 1998	Set 1992	1986 / 1991	1977 / 1985 – 1986					
Mar 1998	Set 1992	1986 / 1991	-					
Mar 1998	Set 1992	_	_					
	C97 21 Nov 1997 21 Nov 1997 01 Out 1997 21 Nov 1997 Out 2005 21 Nov 1997 01 Out 1997 03 Nov 1997 10 Nov 1997 10 Nov 1997 10 Nov 1997 Mar 1998 Mar 1998	C97 T91 21 Nov 1997 - 21 Nov 1997 Apr 1992 01 Out 1997 Jul 1991 21 Nov 1997 Out 1991 Out 2005 - 21 Nov 1997 1992 01 Out 1997 Set 1991 03 Nov 1997 Set 1992 10 Nov 1997 Mar 1992 10 Nov 1997 Mar 1992 10 Nov 1997 Set 1992 Mar 1998 Set 1992 Mar 1998 Set 1992	C97 T91 CF2 21 Nov 1997 21 Nov 1997 Apr 1992 - 01 Out 1997 Jul 1991 1986 / 1991 21 Nov 1997 Out 1991 1986 / 1991 Out 2005 - 1986 / 1991 01 Out 1997 1992 1986 / 1991 01 Out 1997 Set 1991 1986 / 1991 03 Nov 1997 Set 1992 1986 / 1991 10 Nov 1997 Mar 1992 1986 / 1991 10 Nov 1997 Mar 1992 1986 / 1991 10 Nov 1997 Set 1992 1986 / 1991 Mar 1998 Set 1992 1986 / 1991 Mar 1998 Set 1992 1986 / 1991 Mar 1998 Set 1992 1986 / 1991					

	KIT DE VEDAÇÕES								
	CILINDRO								
НС	C97	CS	Ø HASTE	CÓDIGO DO KIT					
Х			50	8H3F0656					
Х			60	8H3F0657					
Х			70	8H3F0658					
	Х	Х	80	8H3F0083					
	Х		85	8H3F0078					
	Х	Х	90	8H3F0084					
	Х	Х	100	8H3F0085					
	Х	Х	110	8H3F0086					
	Х		120	8H3F0087					
	Х		130	8H3F0088					
	Х		150	8H3F0089					
	Х		180	8H3F0090					
	Х		200	8H3F0091					
	Х		230	8H3F0092					

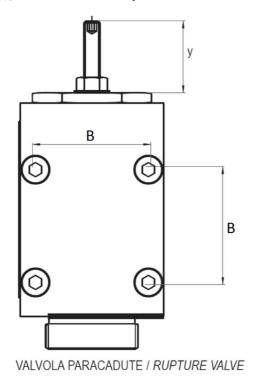
	LEGENDA DAS VEDAÇÕES								
N	DESCRIÇÃO	QUANT.							
1	VEDAÇÃO	VEDAÇÃO 1							
2	RASPADOR	RASPADOR 1							
3	O-ring	1							

COMPARAÇÃO DO KIT DE VEDAÇÕES DE VÁRIOS MODELOS

COMPARAÇÃO DO KIT DE V VEDAÇÃO				VEDAÇOES DE VARIOS MODELOS RASPADOR ANEL GUIA																		
ø	C97		VLDAÇAC	,			QUA	C97		IVA.	3FAD	OK		QUA	C97			HIVELO	JOIA			
HASTE	CS	T91	CF2	CF1	HC2	HC	NT.	CS	T91	CF2	CF1	HC2	HC	NT.	CS	T91	CF2	CF1	HC2	HC	QUA	ANT.
50	B/NEI 255196	B/NEI 255196	5 -	-	B/NEI 255196	-	1	PW 50	PW 50	-	-	PW 50	-	1	I/DWR 50	I/DWR 50	-	-	I/DWR 50	-	:	2
60	B/NEI 295236	B/NEI 295236	5 -	B/NEI 295236	B/NEI 295236	B/NEI 295236	1	PW 60	PW 60	-	PW 60	PW 60	PW 60	1	I/DWR 60	I/DWR 60	-	I/DWR 60	I/DWR 60	I/DWR 60	:	2
70	B/NEI 334275/1	B/NEI 334275/1	B/NEI 334275/1	B/NEI 334275/1	B/NEI 334275/1	B/NEI 334275/1	1	PW 70	PW 70	PW 70	PW 70	PW 70	PW 70	1	I/DWR 70	I/DWR 70	I/DWR 70	I/DWR 70	I/DWR 70	I/DWR 70	:	2
80	B/NEI 393314/1	B/NEI 393314/1	B/NEI 393314/1	B/NEI 393314/1	-	-	1	PW 80	PW 80	PW 80	PW 80	-	-	1	I/DWR 80	I/DWR 80	I/DWR 80	I/DWR 80	-	-	:	2
85	B/NEI 393334/1	-	B/NEI 413334	-	-	-	1	PW 85/1	-	PW 85/1	-	-	-	1	I/DWR 85	-	I/DWR 85	-	-	-	:	2
90	B/NEI 433354	B/NEI 433354	B/NEI 433354	B/NEI 433354	-	-	1	PW 90	PW 90	PW 90	PW 90	-	-	1	I/DWR 90	I/DWR 90	I/DWR 90	I/DWR 90	-	-	:	2
100	B/NEI 472393/1	B/NEI 472393/1	B/NEI 472393/1	B/NEI 472393	-	-	1	PW 100	PW 100	PW 100	PW 100	-	-	1	I/DWR 100	I/DWR 100	I/DWR 100	I/DWR 100	-	-	:	2
110	B/NEI 511433	B/NEI 511433	B/NEI 511433	B/NEI 511433	-	-	1	PW 110	PW 110	PW 110	PW 110	-	-	1	I/DWR 110	I/DWR 110	I/DWR 110	I/DWR 110	-	-	:	2
120	B/NEI 551472	B/NEI 551472	B/NEI 570472	B/NEI 570472	-	-	1	PW 120	PW 120	PW 120	-	-	-	1	I/DWR 120	I/DWR 120	I/DWR 120	I/DWR 120	-	-	:	2
130	B/NEI 590511	B/NEI 590511	B/NEI 610511	B/NEI 610511	-	-	1	PW 130	PW 130	PW 130	PW 130	-	-	1	I/DWR 130	I/DWR 130	I/DWR 130	I/DWR 130	-	-	:	2
150	B/NEI 669590/1	B/NEI 669590/1	B/NEI 669590/1	B/NEI 669590/1	-	-	1	PW 150	PW 150	PW 150	PW 150	-	-	1	I/DWR 150	I/DWR 150	I/DWR 150	I/DWR 150	-	-	:	2
180	B/NEI 787708	B/NEI 787708	B/NEI 767708	B/NEI 767708	-	-	1	PW 180	PW 180	PW 180	PW 180	-	-	1	I/DWR 180	I/DWR 180	I/DWR 180	I/DWR 180	-	-	2 (C	973)
200	B/NEI 866787	B/NEI 866787	B/NEI 866787	-	-	-	1	PW 200	PW 200	PW 200	-	-	-	1	I/DWR 200	I/DWR 200	I/DWR 200	-	-	-	3 (CI	F2 2)
230	B/NEI 1023905	B/NEI 1023905	-	-	-	-	1	PW 230	PW 230	-	-	-	-	1	I/DWR 230	I/DWR 230	-	-	-	-	3	3
				0-	-ring													O-ring				
Ø HAS	E CS	97/CS	T91	CF2		CF1		HC2			НС		QUAN T.	C97	rcs	T91		CF2	CF1	HC2	HC (QUAN T.
50	78,9	7 x 3,53	82,14 x 3,53	-		-	88,	49 X 3	3,53		-		1			75,79 x	3,53	-	-	-	-	1
60	88,4	9 x 3,53	82,14 x 3,53	-	94	,84 x 3,53	88,	49 X 3	3,53	74,	61 X 3	,53	1	-		75,79 x	3,53	-	-	-	-	1
70	98,0	2 x 3,53	91,67 x 3,53	101,20 x	3,53 110),72 x 3,53	88,	49 X 3	3,53	88,	49 X 3	,53	1	_	.	85,32 x	3,53	-	-	-	-	1
80	113,9	90 x 3,53	107,54 x 3,53	101,20 x	3,53 110),72 x 3,53							1	-		98,02 x	3,53	-	-	-	-	1
85	113,9	90 x 3,53	-	120,24 x	3,53	-							1	_		-		-	-	-	-	1
90	123,4	10 x 3,53	117,07 x 3,53	120,24 x	3,53 123	3,40 x 3,53							1	_	. :	110,72 x	3,53	-	-	-	-	1
100	132,9	90 x 3,53	126,59 x 3,53	123,40 x	3,53 132	2,90 x 3,53						1	-	. :	120,24 x	3,53	-	-	-	-	1	
110	142,5	50 x 3,53	139,29 x 3,53	136,12 x	3,53 139	9,29 x 3,53	29 x 3,53					1	-	. :	129,77 x	3,53	-	-	-	-	1	
120	151,9	99 x 3,53	139,29 x 3,53	151,99 x	3,53 164	,69 x 3,53-							1	_	. :	151,99 x	3,53	-	-	-	-	1
130	164,6	59 x 3,53	171,04 x 3,53	151,99 x	3,53 164	I,69 x 3,53							1	-	. :	158,34 x	3,53	-	-	-	-	1
150	183,7	74 x 3,53	183,74 x 3,53	177,40 x	3,53 190),10 x 3,53							1	-	. :	171,04 x	3,53	-	-	-	-	1
180	227,9	96 x 5,34	221,84 x 3,53	209,14 x	3,53 209	9,14 x 3,53							1	-	. :	209,14 x	3,53	-	-	-	-	1
200	247,0	02 x 5,34	240,67 x 5,34	247,02 x	5,34	-							1	-		-		-	-	-	-	1
230	278,7	77 x 5,34	278,77 x 5,34	-		-							1	_		-		-	-	-	-	1

8.6.2 CILINDROS TELESCÓPICOS

KIT DE VEDAÇÕES CT2


CILINDRO TELESCÓPICO DE DOIS ESTÁGIOS						
Ø HASTE	CÓDIGO DO KIT					
CT-2-40	8H3F0130					
CT-2-50	8H3F0132					
CT-2-63	8H3F0134					
CT-2-70	8H3F0136					
CT-2-85	8H3F0138					
CT - 2 - 100	8H3F0140					
CT - 2 - 120	8H3F0142					
CT – 2 - 140	8H3F0144					

KIT DE VEDAÇÕES CT3

CILINDRO TELESCÓPICO DE TRÊS ESTÁGIOS						
Ø HASTE	CÓDIGO DO KIT					
CT 3 – 40	8H3F0131					
CT 3 – 50	8H3F0133					
CT 3 – 63	8H3F0135					
CT 3 – 70	8H3F0137					
CT 3 – 85	8H3F0139					
CT 3 – 100	8H3F0141					
CT 3 – 120	8H3F0143					

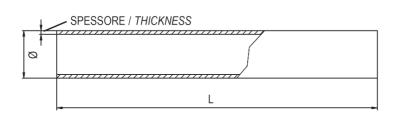
8.6.3 VÁLVULAS PARAQUEDAS

TIDO	INTERVALO DE VAZÃO
TIPO	l/min
HC 034	5 ÷ 55
VP 114	35 ÷ 150
VP 112	70 ÷ 300
VP 200	150 ÷ 600

ENTRE-EIX	O (B) DOS FL	IROS PARA E	NGATE VP
TIDO \ /D	Т	o	
TIPO VP	C97	T91	CF2/CF1
HC 034	39	55	55
VP 114	55	55	60
VP 112	55	55	75
VP 200	65	65	80

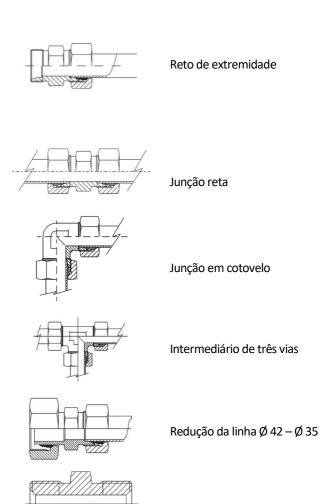
8.6.4 **PARAFUSADORES**

	PARA HASTE COM NTA
Ø HASTE [mm]	CÓDIGO
60	8H201723
70	8H201724
80	8H201725
85	8H201706
90	8H201726
100	8H201727
110	8H201728
120	8H201729
130	8H201730
150	8H201731
180	8H201772
200	8H201704
230	8H201705


8.6.5 ACESSÓRIOS DE RECUPERAÇÃO DE ÓLEO

ACESSÓRIOS PARA RECUPERAÇÃO	DE ÓLEO
Descrição	Código
Conexão em cotovelo para tubo em PVC	CA100383
Tubo em PVC de recuperação de óleo (10)	8H100006
Galão em PVC (5 litros)	CA102237

8.7 CONEXÕES


8.7.1 **TUBOS**

TUBOS EM AÇO (barras	de 6 m)
DESCRIÇÃO	CÓDIGO
Saída Ø 22 x 1,55 mm	CA101725
Saída Ø 35 x 2,5 mm	CA100986
Saída Ø 42 x 3 mm	CA100988
Conexão VP Ø 6 x 1m	CA101178

8.7.2 **CONEXÕES**

		CONEXÕES	
Ø Polega das	Ø mm	DESCRIÇÃO	CÓDIGO
1/8" 1/4"	6 x 1/8"	Reto de extremidade	CA100371
1/4"	6	Junção reta	CA100379
3/4"	22	Junção reta	CA100380
3/4	22	Junção em cotovelo	CA100376
		Junção reta	CA100381
1" 1/4	35	Junção em cotovelo	CA100377
		Intermediário de três vias	CA100374
		Junção reta	CA100382
		Junção em cotovelo	CA100378
1" 1/2	42	Intermediário de três vias	CA100375
1 1/2	42	Redução da linha Ø 42 – Ø 35	CA100384
		Três vias, 2 Ø 42 x 2" GAS	8H300135
2"		União rosqueada de conexão gás	CA101983
2"	2"	Arruela de estanquicidade	CA101984

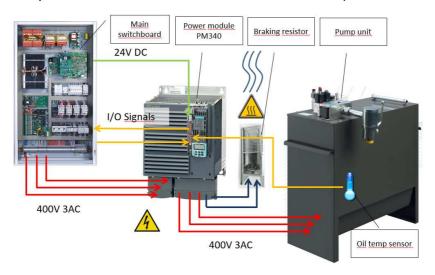
gás

União rosqueada de conexão

9 MANUAL DE INSTRUÇÕES PARA COMPONENTES HIDRÁULICOS

Com cada equipamento, é fornecido um manual de instruções para componentes hidráulicos, no qual são apresentadas informações gerais, instruções de montagem dos componentes hidráulicos, conexões elétricas, instruções de calibração, verificação e manutenção do sistema hidráulico, características dos óleos etc., de modo a facilitar a entrada do próprio equipamento em serviço.

10 INVERTER


10.1 INFORMAÇÕES GERAIS

A OMARLIFT proõe uma solução para a gestão ideal do grupo do motor da bomba, com o uso de um dispositivo variador de tensão e frequência (VVVF) equipado com um software proprietário desenvolvido e testado diretamente pela OMARLIFT com base em uma máquina de última geração de alto desempenho que utiliza a plataforma:

INVERTER SIEMENS S120

Trata-se de um inverter com um software específico, projetado especificamente para a gestão de equipamentos hidráulicos de elevação de pessoas, capaz de compensar automaticamente as variações nas condições de funcionamento em todo o intervalo de trabalho, com a finalidade de garantir uma absoluta suavidade de funcionamento e uma alta precisão de chegada em qualquer condição, sem exigir regulagens ou atividades de ajuste sucessivas, uma vez concluído o comissionamento.

Caracterizado por uma simples configuração em anel aberto, que o torna adequado a novas instalações e a modernizações, sem a complicação de exigir a adoção de um encoder para a detecção da posição da cabine, o inverter OMARLIFT é capaz de assegurar uma altíssima precisão e repetibilidade do espaço de parada, na ordem de +/-5 mm em condições normais, que podem aumentar a até +/-10 mm nos extremos do intervalo de funcionamento, tanto na subida quanto na descida.

O altíssimo desempenho é possibilitado pelo fato de que o software desenvolvido para o inverter SIEMENS oferece um controle instantâneo mais preciso do movimento, seja na subida, seja na descida, uma vez que é adotada uma compensação da viscosidade do óleo quando há uma variação na temperatura, adquirindo instante a instante essa temperatura por meio de um termopar e, consequentemente, adequando os parâmetros de funcionamento por meio dos respectivos mapeamentos, a que se soma a compensação da carga (pressão), cuja ação, conjugada à precedente, melhora a precisão de chegada ao andar em todas as condições de funcionamento (peso e temperatura).

A capacidade superior de adequação do software às reais condições de trabalho também permite evitar, na maior parte dos casos, a adoção de uma resistência de aquecimento do óleo no reservatório, com uma economia adicional para o Cliente.

O inverter pode ser escolhido em várias condições:

- 1. SUBIDA+DESCIDA: é a configuração de alta gama, capaz de controlar da melhor maneira as fases de marcha em subida e marcha em descida. É combinado a uma válvula especificamente projetada, de tipo HI, e a uma resistência de frenagem,
- 2. SOMENTE SUBIDA: nesta configuração, o inverter gerencia, por meio do motor, somente a fase de subida do elevador, e é combinado a uma válvula mecânica HM normal para controlar e gerenciar a descida.

3. UCM: em ambas as configurações, a solução do inverter é, obviamente, compatível com os requisitos de prevenção contra movimentos descontrolados da cabine (UCM), para aplicações que atendem à normativa EN81-20/50, por meio da adoção de uma válvula adicional opcional, de tipo HDU, combinada à válvula principal.

As vantagens podem ser resumidas em:

- Ausência de corrente de arrangue: a corrente máxima de arrangue é a corrente nominal.
- Refaseamento da corrente absorvida da rede: Cosφ ≥ 0,98.
- Redução dos consumos para uma altíssima economia de exercício.
- Otimização do conforto de marcha.
- Possibilidade de escolher o valor da velocidade de inspeção.
- Possibilidade de gestão específica do plano-curto
- Possibilidade de introduzir uma limitação de potência para conter a potência contratual.

10.2 RESISTÊNCIAS DE FRENAGEM

Para o funcionamento correto, os inverters em configuração subida+descida devem ser acoplados a uma resistência de frenagem adequada, uma vez que não são capazes de recuperar a energia desenvolvida durante a frenagem do elevador no curso em descida.

A OMARLIFT também pode fornecer as resistências necessárias para o funcionamento de cada INVERTER, adequadamente dimensionadas para maximizar o desempenho da máquina e garantir a confiabilidade e a duração necessárias em todas as configurações de exercício. Para isso, as resistências também dispõem de um contato de segurança, a ser corretamente conectado no quadro de comando, para a proteção contra o superaquecimento.

10.3 ADVERTÊNCIAS

Siga atentamente os procedimentos indicados abaixo para não correr o risco de graves acidentes.

- A corrente de fuga do inverter para a terra é superior a 30mA, assim, é necessário prever um interruptor diferencial com Id não inferior a 300 mA, de tipo B ou A. A normativa prescreve, para o aterramento, um cabo de seção mínima 10 mm².
- 2. Com configurações incorretas dos parâmetros, o inverter pode causar a rotação do motor a uma velocidade superior à velocidade de sincronização. Não coloque o motor em funcionamento além dos seus limites mecânicos e elétricos.
- 3. Durante o funcionamento, a eventual resistência externa de frenagem se aquece. Não a fixe perto de materiais inflamáveis ou em contato com eles. Para melhorar a dissipação do calor, aconselha-se fixá-la a uma chapa metálica. Evite que possa ser tocada, protegendo-a adequadamente.

10.4 LIMITAÇÃO DE POTÊNCIA

Para permitir otimizar os custos do equipamento e de gestão, os inverters OMARLIFT permitem implementar uma limitação de potência configurável em fábrica, ou diretamente pelo Cliente, e também personalizável mais tarde por meio da definição dos respectivos limites, superados os quais ocorre uma redução de velocidade com relação à velocidade nominal do equipamento, realizando, de fato, um sistema de velocidade múltipla de acordo com a carga na cabine.

A garantia de altos níveis de conforto é dada pelo fato de que a ativação da limitação de velocidade ocorre com um perfil de velocidade arredondado, sem bruscas variações, e uma vez acionada a limitação de potência, ela permanece ativa até o fim do curso que está sendo realizado. A necessidade de ativar ou não a limitação será avaliada automaticamente a cada curso com base nas condições de funcionamento.

Desse modo, a redução de velocidade com o aumento da carga é funcional para a manutenção do nível de absorção de potência exigido da rede elétrica dentro dos valores que se deseja alcançar.

10.5 TABELA DE ACOPLAMENTOS DO INVERTER

COMBINAÇÕES BOMBA – MOTOR – INVERTER

									HI25	0 - 1	1/4															HI2	50 -	1 1/2	2"						Н	1600-	1 1/2	:"		н	600 -	2"						ню	0 - 2					v	ALVE
		55			75			1	.00				125					150				18	80				21	.0		Т		250)			30	0				380					500					600)		PUM	P (I/min)
	4,5	6,5	8	6,5	8	11	6,5	8	11	13	8 8	3 1	1 1	3 1	.5	11	13	15	17	20	15	17	20	25	15	17	20	0 2	5 30	0 2	20	25	30	40	20	25	30	40	20	25	30	40	50	30	40	50	60	70	40	50	60	70	80		OR (HP)
RO	3,3	4,7	5,8	4,7	5,8	7,7	4,7	5,8	7,7	9,5	5 5,	,8 7	,7 9	,5 1	.1	7,7	9,5	11	13	15	11	13	15	18	11	13	15	5 1	8 22	2 1	15	18	22	29	15	18	22	29	15	18	22	29	37	22	29	37	44	51	29	37	44	51	. 59	мот	OR (kW)
DDIAME	10	11	15	11	15	18	11	15	18	22	1	5 1	8 2	2 2	27	18	22	27	29	33	27	29	33	42	27	29	33	3 4	2 5:	1 3	33	12	51	67	33	42	51	67	33	42	51	67	82	51	67	82	101	118	67	82	101	1 118	8 137	'	Current In
ROD DIAMETER (mm)	25	38	45	27	37	45	19	27	37	45	2	2 2	9 3	6 4	5	24	31	36	40	45	29	33	38	45	23	27	32	2 4	0 4!	5 2	27	34	40	45	22	28	34	45	17	21	26	37	45	18	26	34	41	45	18	25	32	38	45		atic press bar)
2	12	16	23	16	23	23	16	23	23	31	2	3 2	3 3	1 3	8	23	31	38	38	46	31	38	46	61	31	38	38	8 6:	1 6:	1 3	38	51	61	87	38	61	61	87	46	61	61	87	105	61	87	105	140	170	87	105	140	170	205	Inverte	r Vacon (A)
	10,2	18	26	18	26	26	18	26	26	32	2 20	6 2	6 3	2 3	8	26	32	38	38	45	32	38	45	60	32	38	38	B 6	0 60	0 3	38	60	60	90	38	60	60	90	45	60	60	90	110	60	90	110	145	178	90	110	145	5 178	8 210		r Siemens 340 (A)
	26	26	32	26	32	32	26	32	32	60	3:	2 3	2 6	0 6	0	32	60	60	60	60	60	60	60	75	60	60	60	7	5 7!	5 6	60	75	75	110	60	75	75	110	60	75	75	110	145	75	110	145	178	205	110	145	178	3 205	5 250		r Siemens 40-2(A)
50	(),47			0,64			0,	,85																																														
60	(),32			0,44			0,	,59				0,74					0,88																																					
70	c),24			0,32			0,	,43				0,54					0,65				0,	78				0,9	91																											
80	C),18			0,25			0,	,33				0,41					0,50				0,	50				0,7	70				0,83	3			1,0	00																		
85	C),16			0,22			0,	,29				0,37					0,44				0,	53				0,6	52				0,73	3			0,8	38																		
90	C),14			0,20			0,	,26				0,33					0,39				0,	17				0,5	55				0,66	6			0,7	79				1,00	ı													
95	C),13			0,18			0,	,24				0,29					0,35				0,	12				0,4	19				0,59	9			0,7	71				0,89														
100	C),12			0,16			0,	,21				0,27					0,32				0,	38				0,4	15				0,53	3			0,6	54				0,81														
110	C),10			0,13			0,	,18				0,22					0,26				0,	32				0,3	37				0,44	4			0,!	53				0,67					0,88								Velo	ità stelo
120	C	0,08			0,11			0,	,15				0,18					0,22				0,	27				0,3	31				0,37	7			0,4	14				0,56					0,74					0,88	8			speed n/s)
125	(0,07			0,10			0,	,14				0,17					0,20				0,	24				0,2	29				0,34	4			0,4	11				0,52					0,68					0,82	2			50 rpm
130	C	0,07			0,09			0,	,13				0,16					0,19				0,	23				0,2	26				0,31	1			0,3	38				0,48					0,63					0,75	5			
140					0,08			0,	,11				0,14					0,16				0,	19				0,2	23				0,27	7			0,3	32				0,41					0,54					0,65	5			
150					0,07			0,	,09				0,12				-	0,14				0,	17				0,2	20				0,24	4			0,2	28				0,36					0,47					0,57	7			
160								0,	,08				0,10					0,12				0,	15				0,1	L7				0,21	1			0,2	25				0,32					0,41					0,50	0			
170								0,	,07				0,09					0,11				0,	13				0,1	L5				0,18	8			0,2	22				0,28					0,37					0,44	4]	
180								0,	,07				0,08					0,10				0,	12				0,1	L4				0,16	6			0,2	20				0,25					0,33					0,39	9			
200													0,07					0,08				0,	10				0,1	11				0,13	3			0,:	16				0,20					0,27					0,32	2			
230																		0,06				0,	07				0,0	8				0,10	0			0,1	12				0,15					0,20	1				0,24	4			

10.6 COMPATIBILIDADE ELETROMAGNÉTICA (EMC)

Juntamente a uma configuração do equipamento conforme as contramedidas de EMC, os filtros de rede limitam os distúrbios conduzidos pelos cabos dos Power Modules aos limites fixados pela normativa EN61800-3, que define os ambientes de instalação e a categoria dos sistemas de acionamento de C1 (melhor) a C4 (pior).

Todos os POWER MODULES SIEMENS são fornecidos com filtro de rede e estão em conformidade com a categoria C3 (ambientes industriais) segundo as disposições da normativa EN 61800-3.

Os PM SIEMENS com o filtro de rede adequado estão em conformidade com a categoria C2 e podem, portanto, ser instalados em ambientes civis, apenas se:

- 1. A instalação e o comissionamento forem realizados por um especialista (conforme definido pela normativa), respeitando os valores-limite de compatibilidade eletromagnética.
- 2. Forem respeitados os seguintes requisitos adicionais:
- Uso de um cabo blindado de capacidade reduzida.
- Cabo do motor mais curto do que 25 m nos PM Blocksize (100 m nos PM Chassis).
- Frequência de impulsos ≤ 4 kHz nos PM Blocksize (≤ 2 kHz nos PM Chassis).
- Corrente ≤ corrente de entrada nominal indicada nos dados técnicos.

10.7 PEÇAS DE REPOSIÇÃO

O serviço de assistência OMARLIFT é capaz de fornecer assistência, software e peças de reposição para as máquinas já em serviço.

As Control Units (CU) e as placas de memória Compact Flash (CFC) não são compatíveis entre inverters da série PM 340 e PM240-2 e não podem ser intercambiadas. São necessárias, portanto, peças de reposição específicas.

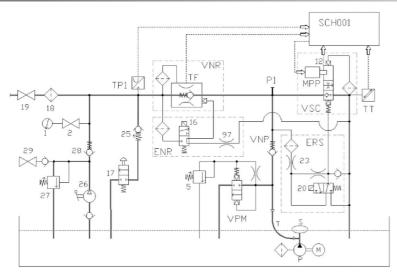
Por questões de segurança, as CU e as CFC não podem ser substituídas pelas de outras máquinas, mesmo dentro de uma mesma família de produtos. Caso seja instalada uma CFC em uma outra CU, gera-se um erro bloqueante!

Caso seja necessária a reprogramação do inverter, é necessário fornecer ao Serviço de Assistência o número de série tanto da CU quanto da CFC relativas a essa instalação específica, uma vez que devem ser necessariamente combinadas para garantir o funcionamento correto do sistema.

11 VÁLVULA FLETRÔNICA

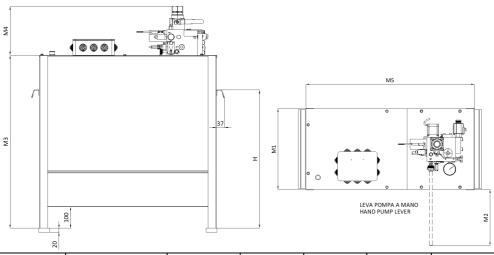
A gama de produtos OMARLIFT dispõe de uma oferta completa de unidades de controle da nova válvula eletrônica HEVOS HE, de alto desempenho em todas as condições de exercício.

Disponível em três versões de acordo com o fluxo máximo admitido, a válvula HEVOS HE dispõe de uma tecnologia retroacionada, graças à presença de sensores de fluxo, temperatura e pressão. O motor passo a passo (MPP) que gerencia o pistão regulador de fluxo é pilotado instante a instante segundo mapas pré-configurados em função dos parâmetros de funcionamento instantâneos, verificandose constantemente o resultado obtido, como garantia de repetitividade e precisão da velocidade, bem como de suavidade na parada no andar em todas as condições.


As principais características são:

- Placa eletrônica de controle específica com Self-Learn Mode, que garante um controle preciso do curso, reduzindo ao mínimo o trecho em baixa velocidade antes da parada no andar, com aumento do conforto e redução do tempo de curso e do consumo de energia
- Interface do quadro de manobra CANopen
- Gestão multiválvula com conexão em série ao quadro de comando e lógica master/slave (uma placa master + até 7 slaves) ou com conexão em paralelo
- Maior eficiência energética e aquecimento contido do óleo. Ideal também para aplicações em condições de tráfico elevado
- Compensação automática da pressão e das variações de viscosidade do óleo para um desempenho constante
- Gestão do arranque e da parada do motor por parte da lógica da placa eletrônica, por meio dos sinais I/O correspondentes com o quadro de comando.
- Interface de configuração e diagnóstico por meio do smartphone graças à aplicação HEVOS HE, que pode ser baixada gratuitamente na Google Play Store e na Apple Store
- Layout completamente integrado nas dimensões do reservatório, com engate do tubo de óleo e torneira verticais, para dimensões mais compactas
- Não necessita de encoder no vão do curso
- Disponibilidade de quadros elétricos de comando especificamente configurados para válvulas HEVOS HE
- Ampla gama que cobre todas as exigências de aplicação (de 8 a 600 l/min). Para as combinações motor-bombareservatório, consulte os itens 2.5, 2.6, 2.7
- Dispositivo UCM integrado na válvula, com certificação TÜV Süd de acordo com as normativas EN81-20/50, com as seguintes características:

MODELO VÁLVULA	DA	INTERV TEMP	VISCOSIDADE DO ÓLEO	PRESSÃO	FLUXO CERTIF	
HE100		5-70 °C	14-290 cSt	10-70 bar	8-100 l/min	
HE250		5-70 °C	14-290 cSt	10-50 bar	20-250 l/min	
HE650		5-70 °C	14-290 cSt	10-45 bar	250-700 l/min	



TF Medidor de fluxo
TP1 Medidor de pressão
TT Medidor de temperatura
ENR Eletroválvula de desbloqueio VNR
ERS Eletroválvula de desbloqueio VSC
MPP Motor passo a passo de comando VSC
VNP Válvula de não-retorno para a bomba
VNR Válvula de não-retorno e segurança de descida
VPM Válvula de máxima pressão da bomba
VSC Válvula reguladora de fluxo
P1 Engate do grupo de micronivelamento auxiliar
5 Regulagem da intervenção da válvula de máx

pressão: apertando, aumenta (+), soltando, diminui(-)

Esquema hidráulico da válvula HEVOS HE

TIPO DE VÁLVULA	TIPO DE RESERVATÓRIO	VOLUME ÚTIL <i>litros</i>	M1 mm	M2 mm	M3 mm	M4 mm	M5 mm	H mm
HE250	110/S	65	300	336	702		700	640
HE250	135/S	100	300	336	902	218	700	640
HE250	210/S	140	400	276	810	(280 alavanca da	830	650
HE250	320/S	220	460	231	950	torneira)	950	650
HE250	450	310	700	106	952		1000	650
HE650	320/S	220	460	259	950		950	650
HE650	450	310	700	110	952	286	1000	650
HE650	680	490	800	69	1002	(330 alavanca da	1250	650
HE650	900	690	800	360	1202	torneira)	1250	650
HE650	1000	790	800	360	1302		1250	650

A Omarlift está sempre actualizada sobre as novas certificações, actuais e futuras.

Diretiva ascensores 2014/33/CE
Diretiva Máquinas 2006-42/CE
Diretiva ascensores 95/16/CE
Norma EN 81-20
Norma EN 81-50
Norma UNI 10411:2024
Norma EN 81-41
Norma EN 81-2 + A3
Norma ABNT NBR 16858

Com a instalação correta por pessoal qualificado, os dispositivos eléctricos cumprem os requisitos EMC (EN 61800-3)

OMARLIFT S.r.I

Via Fratelli Kennedy, 22/D 24060 Bagnatica (Bg) - Italy Tel.: +39 035 689 611 Fax: +39 035 689 671 www.omarlift.eu

OMARLIFT BRASIL

Rua Bom Pastor 2100, São Paulo, SP, 04203-002 Celular: +5511 981739591 Email: vendas@omarlift.com.br

